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ABSTRACT: The Redundant Binary Partial Product Generator method reduces the highest height of the
partial product array created by a radix 16 Modified Booth Encoded multiplier by one row. This is
accomplished without affecting the latency of the block that generates the partial product. To improve the
performance of binary radix-4 modified Booth recoded multipliers, we decrease the highest point of the
partial product columns to [n/4] for n = 64-bit unsigned operands. The typical highest point is [(n + 1)/4],
which differs from this. In this approach, the highest height is reduced by one unit. Arithmetic multipliers
help the ALU and CPU perform better. The suggested approach is evaluated by comparing it to the Normal
Booth Multiplier. The three areas where logic synthesis performed best were area, latency, and power. When
each operand in the multiplier has a word length of 64 bits and n bits, simulations demonstrate that
suggested multiplier architectures utilize significantly less space, time, and power. The proposed Xilinx 14.2
architecture is used to investigate latency and area in this study.
KEYWORDS: Modified Booth Encoding, Radix-16, Pipeline, Multiplier, Enhanced, Carry Select Adder,
Binary Excess Converter.

1. INTRODUCTION
Microprocessors, digital signal processors, FIR
filters, and many other high-performance digital
systems rely on multipliers. There have been
numerous proposals for designs and low-power
multiplication algorithms that are quick.
Thanks to technological advancements, numerous
researchers are currently developing multipliers
for use in very large scale integration (VLSI),
thanks to their consistent architecture and fast
speed. When dealing with digital signals, it is
essential to perform multiplication operations
efficiently and rapidly while keeping the power
budget in check. A simple multiplication formula
is typically decomposed using three steps. One is
to make partial products (pp), another is to reduce
pp, and a third is to spread the end carry.
Creating a list of partial product rows is the initial
step. What occurs when the multiplicand is
increased by one bit is displayed in each row. The
ith row of the X x Y multiplication is frequently
the result of a proper left shifting of yi x X. The
reason behind this is that X and Y are both
represented on n bits, and the rows are structured

as xn_1... x0 and yn_1... y0 in particular. Put
simply, when yi equals zero, the outcome can be
either a series of zeros or the multiplicand X. It is
certain that in the initial phase of this example, n
[1-4] PP rows were created. Forty years ago,
Booth proposed the initial idea for binary number
encoding. Ten years down the road, MacSorley
proposed an alternative to Booth's approach. In
order to reduce the amount of pp rows, a new
technique known as modified booth encoding
(MBE) has been developed. To a height of [n/2]+1
rows, it is capable of handling it. This is the
addition of Two multiplied by itself. With radius-
4, MBE creates a pp array with no additional
latency, up to a height of [n/2] rows. All zeroes,
+X, or +2X are the three possible values for each
row in the pp array. The multiplier is able to
function more rapidly as a result of this pp
reduction.
Using a compression tree, all pp rows are shrunk
during the pp reduction phase. This procedure
produces two rows of data, known as duplicate
carry save form. This allows for far quicker
implementations because the intermediate addition
numbers are unimportant. Display the result in a
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single row devoid of duplicates in the last addition
(carry-propagated). The final addition must also
contain this row. In this study, we demonstrate
how to reduce the height of a pp array with up to
[n/3] rows using the Radix-8 booth recoding
technique. Recent results from a related study that
employed a different approach to reduce the
maximum height to [n/3] were encouraging . This
is why the next sections will evaluate the
methodology in relation to the suggested method.

2. EXISTING METHOD
The original Booth technique has been used to
allay worries about sign correction in signed
number multiplications even though it does not
decrease the number of PPs. We have presented a
modified booth encoding (MBE) method that is
also referred to as the radix-4 booth algorithm.
That cuts the number of PP segments in half. The
parallel multiplier's complexity is greatly
decreased by employing MBE. Moreover, the
latency and power consumption of the complete
multiplier are decreased. Assume that the
multiplicand and multiplier are A =
aN−1aN−2 · · · a2a1a0 and B =
bN−1bN−2 · · · b2b1b0, respectively.
After the multiplier bits are encoded, groups of
three neighboring bits are produced. The two side
bits overlap with neighboring groups, with the
exception of the first multiplier bit group. Based
on the encoded results from A, the Booth decoders
select -2A, -A, 0, A, or 2A to create PP rows. The
multiplicand is shifted left by a conventional 1-bit
to provide 2A. To perform the negation operation,
flip every bit in A and add one to the position of
the least significant bit (LSB). In this work, this
term is called the proper term. As a result, moving
or inverting the multiplicand bits makes it simple
to build the PP for each line. The circuit diagram
for the MBE technique is shown in Figure 2.
Table 1 is an example of a basic MBE's K-Map.
As a result, the Booth encoder ppij's output looks
like this:

The negation operation's corrected term is as
follows:

The correction term (Ei) of the negation operation
is nearly identical to the multiplicative side of the
multiplier, as indicated by Equation (2), with the
exception of b2i+1b2ib2i−1 = 111. By
reevaluating this entry in the MBE truth table, we
can further reduce the complexity of Ei, it is
feasible to simplify an E0 i by converting all
elements in the sixth column of Table 1 to 1.
Nevertheless, this would lead to a marginally
more intricate pp0 ij. This is accomplished
through the implementation of the subsequent
methodology:

Fig. 1.The typical building blocks of an 8-bit RB
multiplier

Fig. 2. MBE scheme: encoder and decoder

3. PROPOSEDMETHOD
The K-map of the radix-4 approximate modified
Booth encoder (R4AMBE6), also known as
appij6−1, is shown in Table 1. This map has six
errors. When a value of 0 is present, a "1" has
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been changed to a "0," and when a value of 1 is
present, a "0" has been changed to a "1." Only six
lines need to be changed to make booth encoding
easier.
The idea behind this rough design is to get the
truth table to be as symmetrical as possible with as
little complexity as possible. An '0' changes into a
'1' in the K-map, and a '1' changes into a '0' due to
three changes. The following data is made by
R4AMBE6:

R4AMBE6 simplifies Booth encoding and lowers
critical path delay when compared to accurate
MBE. The blunder rate (Pbe) is expressed as
follows: Pbe is comparable to 18.75%, or 6 out of
32. Figure 5 depicts how R4AMBE6's gates are
organized. Figure 2 depicts the standard MBE
design. It consists of one NAND-2 gate, four
XNOR-2 gates, one XOR-2 gate, one OR-3 gate,
and one OR2 gate. The R4AMBE6 design
requires only three gates: one XOR-2, one AND-2,
and one OR-2.
Figure 1 shows the Radix-4 estimate, or app 0
ij6−1, using the new modified Booth Encoding
(R4ANMBE6) with six flaws in the K-map. In
this approximation design, more modifications
have occurred from "0" to "1" than from "1" to
"0." As a result, R4ANMB6 generally delivers
more precise information than its exact
counterpart.
TABLE 1: K-Map of R4AMBE6

Fig. 3. The gate-level circuit R4AMBE6 that has
been suggested

Table 1 is used to determine the predicted pp 0 ij:

This simplifies the comprehension of the
correction term (Ei). The error rate of this one and
R4AMBE6 is identical: The gate level circuit of
the R4ANMBE6 is illustrated in Figure 4. The
R4AMBE6 design requires only one XOR-2 gate,
one AND-2 gate, and one OR-2 gate. They all
require the same amount of effort.

Fig. 4. This is the gate-level circuit for the
R4AMBE6 that has been proposed.

Fig. 5. The ARBC-1's gate level circuit
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Fig.6. The gate-level circuit diagram for the
ARBC-2 microprocessor.
To ensure the efficiency of designs, it is necessary
to reduce the difference between the approximate
RB compressor and its exact equivalent. The
compression yields identical outcomes when
either (1, 0) or (0, 1) is equal to (x - k, x + k).
Therefore, the result stays accurate, despite the
fact that the RB compressor produces a different
conclusion (x − k,x + k) = (1, 0) compared to the
precise compression result (x − k,x + k) = (0, 1).
Therefore, the following four compression results
are similar: (0, 0) = (0, 0), (0, 1) = (1, 0), (1, 0) =
(0, 1) and (1, 1) = (1, 1).
A Superior RB-NB Converter for Accuracy
and Precision
You can change the biased approximate results by
using ARNC with lower numbers. This is because
the approximate Booth encoders and approximate
RB compressors usually give results that are
higher than the exact results. Using an
approximation adder that makes smaller outputs is
part of the compensating concept. Compared tothe
exact outcomes. Because of this, it is possible to
make the RB-NB conversion simpler while
keeping the overall
The accuracy of the estimated RB multipliers has
also been improved. In Table 6, you can see the
truth table for a possible close RB-NB translator.
The RB-NB digit converter can be guessed by
using a simple NOR gate in the way shown below:
S 0 k = S + S + k + − k The approximate RB

multipliers in this part are made in the following
way.
The approximate Booth encoders R4AMBE6 and
R4ANMBE6 are suggested as a way to make
estimated PPs. The ARBC-1 and ARBC-2 are
examples of close RB compressors that can
greatly improve speed and cut down on
compression delay when the input size is a power
of two. To change the RB digit to the NB digit,
the roughly RB-NB converter is used. This
converter is made up of NOR gates. It works with
a suggested guess factor p (where p = 1, 2,..., 2N).
This is the number of least important PP columns
that the approximate Booth encoders made.

TABLE 2: The Conversion of RB-NB Truth Table

The PPs in the P column are already close, so they
can be put together with an RB 4:2 expander that
is also close to increase speed and greatly decrease
power use. For the same reason, the approx. RB-
NB converter also changes the p least significant
RB digits to get to the end result. We suggest four
RB factors that are close to each other. In cases
where p is less than or equal to 4, they use the
exact regular PP array described. In cases where p
is greater than or equal to 4, they use the estimated
regular PP array, in which bit pairs (E2, 0) and
(E3, 1) of Fig. 4 can be left out.
All of them use the approved RB-NB converter,
even though their basic designs are different. The
end results can be reached with the help of the
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exact design for the 2N-p most important PP
columns. In the p PP columns, the four RB factors
change in the following ways:
1) R4AMBE6 generates the p-least significant PP
columns, and ARBC-1 implements the first
approximation RB multiplier's approximate PP
accumulation.
2) The second approximation RB multiplier
(R4ARBM2) uses R4AMBE6 to build the p least
significant PP columns, and ARBC-2 is used to
generate the required approximate PP
accumulation.
3) R4ANMBE6 generates the p least significant
PP columns and ARBC-1 executes approximate
PP accumulation in the third approximation RB
multiplier (R4ARBM3).
4) R4ANMBE6 generates the p least significant
PP columns, and ARBC-2 is used by the fourth
approximation RB multiplier (R4ARBM4) to
approximate PP accumulation. By controlling the
inaccuracy using the approximation factor p,
reasonable precision can be used in many different
contexts.

Fig. 9. The dot diagram of the 8-bit approximate
RB multiplier that has been proposed
As shown in Fig. 9, an approximate RB
compressor, an approximate RB-NB converter, an
accurate regular PP, and an estimate Booth
encoder are used to make a roughly 8-bit RB
multiplier with p=4. A box with a solid line means
the RB compressor is correct, while a box with a
dashed line means the RB 4:2 compressor is about
right. Ei stands for the expected PP term, ▼ for

the changed PP after logic reduction, and ● for the
real PP.

4. SIMLUATION RESULTS
Simulation is employed to evaluate and verify the
functionality of the project that has been
developed. The synthesis process commences with
the RTL model and the Xilinx ISE utility after
functional verification. The RTL model is
converted into a gate level netlist and provided to
a specific technology library during the synthesis
phase. A diverse selection of Spartan 3E devices
is included in the Xilinx ISE utility. This design
was generated using the "XC3S500E" device and
its accompanying "FG320" package. The device's
cadence was configured to "-5." The outcomes
were subjected to the subsequent analysis after
this design was synthesized:

Fig 7: Simulation Result

Fig 8: Proposed Design Summary
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Fig 9: Proposed Timing Report

Fig 10: Power Summary
Table 3: COMPARISION TABLE

5. CONCLUSION
When compared to conventional Booth multipliers,
the suggested method enhances the multiplier's
power-delay product performance. We have
shown how to apply a one-unit height reduction to
Booth recoded magnitude multipliers with 64-bit
and 128-bit radius-4. Cell-based designs with n >
32 are made possible by this decrease in latency. It
may also be possible to give the reduction tree
design of the pipelined multiplier more latitude. In
general processors, the Booth technique that has

been suggested could be quite helpful. Mobile
application processors, digital signal processors,
and mathematical units are used in booth encoding.
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