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Abstract: Customers may access cloud storage services conveniently using Mobile Cloud 

Storage (MCS). In this research, we offer a mobile cloud storage method that is efficient, 

safe, and privacy-preserving. It ensures both data confidentiality and privacy at the same 

time, particularly the access pattern. More specifically, we suggest that the fundamental 

building block of the suggested mobile cloud storage system be an oblivious selection and 

update (OSU) protocol. By generating a small encrypted vector, OSU, which is based on 

onion additively homomorphic encryption with constant encryption layers, allows the client 

to silently retrieve an encrypted data item from the cloud and update it with a new value, 

thereby reducing communication overheads and client computation. Our work is more 

appropriate for MCS scenarios than prior efforts due to its useful qualities including constant 

communication overhead, lightweight client-side computation (a few additively 

homomorphic operations), and fine-grained data structure (small item size). Furthermore, our 

technique may be verified to withstand malicious cloud by using the "verification chunks" 

method. According to the comparison and assessment, our plan outperforms current blind 

storage options in terms of client and cloud workloads, respectively. 

Index Terms: Mobile cloud storage, data security, privacy-preserving, efficient, malicious 

cloud server. 

I. Introduction 

Mobile cloud storage (MCS) allows users to access data stored on a cloud using mobile 

devices from any location. Owing to its alluring qualities, MCS is growing in popularity. 

Certain major corporations, including Apple iCloud, Dropbox, Microsoft OneDrive, and 

Google Drive, provide MCS services for commercial use. The cloud isn't always seen as 

completely trustworthy. As a result, the client may use encryption techniques to protect data 

before sending it to the cloud. Nonetheless, data in MSC-based applications is always 

connected to some other information, such location data in location-based services. The data 

item that is being retrieved in this case exposes more information to the cloud server. The 

cloud may be able to deduce the client's behaviour and even the encrypted data's content by 
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using this access pattern leak. For instance, using a broad inference attack with access pattern 

leaks and little prior information, a cloud may detect around 80% of the search queries in a 

searchable encryption system [1]. Technologies that may safeguard data and access patterns 

include oblivious random access machines (ORAM) [4], oblivious storage (OS) [3], and 

oblivious transfer (OT) [2]. These solutions, in general, let a client access its data that is 

outsourced and kept in an untrusted cloud without disclosing which items have been accessed 

or even the kind of actions that are requested. These methods have been extensively used in a 

variety of application scenarios, including searchable encryption [5]–[7], encrypted hidden 

volumes [8], [9], cloud storage [10]–[13], multi-party computing [14]–[18], etc., because of 

their high degree of privacy protection. 

However, using current unaware systems in an MCS situation presents some difficulties for a 

number of reasons. First, wireless networks like Wi-Fi, LTE, and ad hoc are often used to 

link mobile devices to the Internet. This implies that the communication capacity available to 

mobile devices for data download and upload is constrained. Because of the high 

communication cost, many techniques that suffer from the well-known communication 

bandwidth overhead lower bound result O(log N) [4] cannot be used in MCS.1. Second, 

despite notable advancements in processing power, contemporary mobile devices—such as 

smartphones and tablets—remain unable to match the capabilities of personal computers or 

other robust gadgets. Mobile gadgets with complex computing also have shorter battery lives. 

Because of the complicated client-side encryption and decryption computation involved, 

some schemes based on fully homomorphic encryption (FHE) [19] or multi-layer onion 

additively homomorphic encryption [20] are also unsuitable for MCS, even though they get 

around the communication lower bound and achieve constant communication bandwidth 

overhead. Thirdly, the larger minimum effective item size also hurts a lot of the current 

unaware methods. The smallest amount of bits in an effective item of an oblivious system 

needed to satisfy the predetermined communication complexity (constant or logarithmic) is 

referred to as the minimum effective item size. The mobile client cannot fine-grained access 

its own data because to Lager item size. Additionally, it raises the current oblivious 

techniques' communication or processing overhead even more. 

Certain unaware systems aim to increase efficiency by using data location. Data locality 

indicates a client's propensity to get its data quickly. Two common forms of reference locality 

of data access are spatial locality and temporal locality. When a certain item is accessed, the 

client may access neighbouring data objects, which is referred to as spatial locality. Temporal 
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locality is the term used to describe the client's frequent short-term reuse of data. When using 

non-constant communication overhead oblivious techniques that take spatial proximity into 

account, the amortised communication overhead when accessing many objects is less than 

when accessing a single item on its own [21]. By using temporal locality, some oblivious 

techniques may also become much more efficient since, once an object is visited, retrieving it 

again just needs a little amount of light processing and communication. But to the best of our 

knowledge, no relevant study has taken temporal location into account. 

II. Related Work 

In order to protect access pattern privacy, Goldreich and Ostrovsky presented the initial idea, 

known as the oblivious random access machine (ORAM) [4]. In addition to demonstrating a 

communication overhead lower-bound blowup, they offered a practical solution, Square Root 

ORAM ℠(log N). The memory, or cloud in a cloud computing application, functions as a 

passive storage entity in their context (passive setting) and doesn't do any processing on data. 

A number of works have been enhanced in terms of theory and efficiency within this context 

[22]–[33]. Their architecture was first arranged by Shi et al. into a binary tree over buckets 

[24]. The suggested structure achieves O(log3 N) communication worst-case cost by 

operating blocks via tree pathways. Stefanov et al. presented Path ORAM [26], which is 

based on the binary tree ORAM framework. In a passive context, it accomplished the Ω(log 

N) lower-bound blowup that Goldreich and Ostrovsky [4] had shown. Additionally, it was 

much less complex than previous designs since it did not need complex cryptographic 

primitives, and given appropriate settings, it was efficient with a tiny end-to-end latency. 

In fact, the cloud of today is thought to possess substantial processing power and be able to 

do complex calculations. Subsequent efforts [19], [20], and [34] adopted the computation 

cloud configuration and got around the lower-bound by letting the cloud handle complex 

calculation for the client. Apon et al. initially formalised the verifiable oblivious storage, 

which extends the concept of ORAM by enabling the storage medium to execute 

computation, even though they were not the first to adopt the cloud computing paradigm [19]. 

An Onion ORAM, or continuous communication bandwidth ORAM, incorporating cloud 

computing was suggested by Devadas et al. [20]. The data blocks in Onion ORAM were 

encrypted using a multi-layer encryption scheme that formed a "onion" and was additively 

homomorphic [35, 36]. Alternatively, the scheme was somewhat homomorphic and allowed 

the client to retrieve the target blocks and evict blocks through paths with small encrypted 
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select vectors. For appropriate security settings, Onion ORAM overflowing with minimal 

probability by combining the reverse lexicographical eviction order technique [16]. Another 

constant communication bandwidth O RAM, called C-ORAM, was suggested by Moataz et 

al. [34]. In contrast to Onion ORAM, C-ORAM eliminated multilayer homomorphic 

encryption in favour of an effective oblivious merging method. 

As a result, both the necessary block size and cloud computing costs were greatly decreased. 

Data locality in OS/ORAM systems was recently the subject of many related publications 

[21], [37]–[39]. To increase efficiency, the authors of [38] discovered a particular kind of 

programme locality for recursive ORAM scheme operations. Locality-preserving ORAMs 

were explicitly explored by Asharov et al. in [39]. These ORAMs maintained the locality of 

the accessible memory areas and only revealed the lengths of the contiguous memory regions 

that were accessed. We do not investigate increasing spatial locality in this study since it does 

not considerably enhance the performance of schemes with constant communication 

bandwidth overhead. 

III. Proposed model 

As shown in Fig. 1, there are two entities involved in a mobile cloud storage system, e.g. 

client (C) and cloud (S). The client C first employs some technologies to protect its data, such 

as encryption schemes. Then it uploads its encrypted data into a remote cloud server S. After 

that, the client C can access its data via a mobile device, such as mobile phone, tablet or 

laptop computer. The client’s data is represented as a “key-value” form similar to most cloud 

storage services. Specifically, the cloud supports the following fundamental access 

operations. • get(k). If there is an item labeled with the key k (abbr. item k) in the storage, 

then return the corresponding value to the client, else return ⊥. • put(k, v∗ ). If the item k is in 

the storage, then update the value of this item with v ∗, else insert a new item tuple (k, v∗) to 

the storage. • remove(k). If the item k is in the storage, then delete the item from the storage. 
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Figure 1: System Model 

In the system, the communication channel between the client and the cloud is considered to 

be secure. That means the confidentiality and integrity of all messages in the channel are 

guaranteed. This condition can be easily achieved with standard cryptographic tools, such as 

public key encryption, digital signature and public key infrastructure (PKI). This helps to 

simplify the description of our scheme. 

Additively Homomorphic Encryption  

Homomorphic encryption is a form of public key encryption. It allows anyone with the public 

key to manipulate ciphertexts to generate a new ciphertext, which is encrypted of 

corresponding operation result of original plaintexts. Compared with fully homomorphic 

encryption, additively homomorphic encryption scheme only supports homomorphic additive 

operation, but has higher efficiency. In our scheme, we employ a special additively 

homomorphic encryption scheme, i.e. Damgard-Jurik construction [˚ 35]. In Damgard-Jurik 

construction, ciphertexts are hierarchical, ˚ which means the lower layer ciphertext can be 

encrypted into a higher layer. Additionally, for two ciphertexts in the same layer, anyone with 

the public key can execute homomorphic additive operation on them without decrypting. 

Specifically, there are three algorithms in Damgard-Jurik ˚ construction. 

• Key Generation. The algorithm takes input a security parameter κ and generates an RSA 

modulus n = pq, where |p| = |q| = κ. Then the public key is n while the secret key is the least 

common multiple λ = Lcm(p − 1, q − 1). • Encryption. To encrypt a message m ∈ Zns , the 

algorithm first chooses a random number r ∈ Z ∗ ns+1 , and sets the ciphertext as c = (1 + n) 

m · r n s mod n s+1 . 3 • Decryption. To decrypt a ciphertext c ∈ Z ∗ ns+1, the algorithm first 

computes a number d, such that d = 1 mod n s and d = 0 mod λ by the Chinese Remainder 

Theorem. 

𝑐𝑑  = ((1 + 𝑛)𝑚 ⋅ 𝑟𝑛𝑠)𝑑 = (1 + 𝑛)𝑚𝑑mod𝑛𝑠 ⋅ (𝑟𝑛𝑠)𝑑mod𝜆 = (1 + 𝑛)𝑚mod𝑛𝑠+1  

After that, invokes the algorithm described in [35] to retrieve 𝑚mod𝑛𝑠 from(1 +𝑛)𝑚mod𝑛𝑠+1. 

Note that, when encrypting a message m ∈ Zns into the s layer to get a ciphertext c ∈ Zns+1 , 

the ciphertext is also in the s + 1 layer plaintext space and can be encrypted again to get 
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another ciphertext c 0 ∈ Zns+2 . Accordingly, to retrieve the message m from the ciphertext c 

0 , the decryption algorithm should be executed twice. For convenience, we use the notation 

JmKl to denote the AHE ciphertext directly encrypted m ∈ Znl into the l layer. We also use ◦ 

to represent the homomorphic addition operation: Jm1Kl ◦ Jm2Kl = Jm1 + m2Kl . Moreover, 

we independently explore the following useful property of Damgard-Jurik construction. In 

this cryp- ˚ tosystem, if a ciphertext is encrypted of a message from a lower layer message 

space into a higher level, this ciphertext can be reduced to the lower layer without decrypting 

it. For example, a message m ∈ Znu can be encrypted in w-th layer to get the ciphertext 

JmKw, where w > u. Then we can easily transform the ciphertext JmKw into the v layer to 

get a new ciphertext JmKv, where w > v ≥ u, by computing JmKv = JmKw mod n v+1. The 

detail of this property is shown in Appendix A. 

 

Oblivious Selection and Update Protocol  

Here, we first describe a notion named oblivious selection and update (OSU) protocol. In this 

two-party protocol, a client C securely stores a set of data in a cloud S. Then, the client C can 

obliviously retrieve a target block from the cloud and update it with another block with small 

client computation. We believe this protocol will be of independent interest in many secure 

multi-party computation scenarios. Formally, the oblivious selection and update protocol is 

defined as follows. Definition 2 (Oblivious Selection and Update Protocol). A two-phase 

oblivious selection and update protocol is an interactive protocol between a client and a cloud 
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with two phases i.e. selection phase and update phase. In the protocol, the cloud takes input a 

set of protected data set D = {D1, D2, ..., Dt} and public information, e.g. public key pk, and 

the client takes input an index k (1 ≤ k ≤ t), a fresh value v ∗ and its secret information, e.g. 

secret key sk. At the end of the selection phase, the client will get Dk. At the end of the 

update phase, Dk will be updated by the fresh value v ∗ and Di will remains unchanged for 

all i 6= k. During the protocol, the cloud learns nothing about the data set D or the index k. 

formally, the following notations are used to denote the two phases of OSU. (𝐷𝑘; ⊥) ← 𝑂𝑆𝑈1(𝑘, 𝑠𝑘; 𝒟, 𝑝𝑘)(⊥; 𝒟′) ← 𝑂𝑆𝑈2(𝐷𝑘, 𝑘, 𝑣∗, 𝑠𝑘; 𝒟, 𝑝𝑘) 

It easy to know that data Di should be protected by probabilistic method, such as probabilistic 

encryption. Otherwise, the cloud will learn the index k while updating Dk with the fresh 

value v ∗. Besides, the fresh value v ∗ is not necessary until the update phase. Thus, the client 

can determine the fresh value v ∗ after obtaining Dk. 

IV. Implementation and Evaluation 

We first compare the proposed mobile cloud storage scheme with other two oblivious random 

access machine schemes, which also have constant communication bandwidth overhead, i.e. 

Onion ORAM [20] and C-ORAM [34]. The comparison is shown in the Table 2. Since there 

are omitted large constants in Onion ORAM and C-ORAM, our scheme has significantly 

smaller item (block) size than other two schemes. 

Then we implement the proposed mobile cloud storage scheme with Java and conduct the 

evaluation environment with workstations to simulate the client and the cloud, respectively. 

The workstations are all installed with Ubuntu 16.06 LTS system with 3.4 GHz Intel Core i5-

7500 processor. 

For security, we set the parameters of AHE scheme with |p| = |q| = 1024 and |n| = 2048. We 

also partially implement Onion ORAM and C-ORAM and set parameters of Onion ORAM 

and C-ORAM following [41]. Specifically, the real block number of a bucket and the eviction 

factor are both set as 333 and λ is set as 80. All experiments are run in four-threaded method 

and semi-honest setting. The Table 3 indicates the performances of per access in three 

schemes on a reasonable database (1 GiB). Due to the smaller item size and constant 

parameters, our scheme is much more efficient than Onion ORAM and C-ORAM in terms of 

client computation, cloud computation and communication. Since the runtime of Onion 

ORAM is enormous, the experimental results of Onion ORAM are estimated based on the 
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evaluation performances of core operations in Onion ORAM. In our evaluation environment, 

even in the best case and omitting the amortized cost of eviction, the cloud computation of 

per access in Onion ORAM still takes about 3.5 days. Note that, if we repeatedly run access 

operation 18 times in our scheme to retrieve same size data (81 KiB) as in C-ORAM, our 

scheme has almost the same client computation (25.38 s) as the C-ORAM scheme, but the 

cloud computation is still much smaller than C-ORAM, i.e. about 10 times smaller. 

V. Conclusion 

In this work, we suggest a mobile cloud storage system (MCS) that is effective, safe, and 

privacy-preserving. The suggested strategy may simultaneously secure access patterns and 

data. Our approach offers lower item size, lightweight client-side computation, and consistent 

communication overhead when compared to previous techniques. Additionally, we examine 

temporal locality to enhance the scheme's efficiency even more. We can verify that our 

technique can withstand malevolent cloud by integrating extra methods. We also provide an 

obliging selection and update protocol, which is a fundamental component of the proposed 

MCS system. A client may use a short vector to obligingly pick and update one of its 

encrypted data items that are outsourced to the cloud. We think our protocol could be of 

independent relevance for additional secure multi-party computing application situations 

because of its modest client computation and communication. Our plan accomplishes data 

confidentiality and a suitable degree of privacy preservation, according to security and 

privacy proofs and evaluations. Finally, we thoroughly estimate our structure in a simulation 

environment and compare our scheme with other two oblivious storage strategies. The results 

show that our strategy performs well and is notably efficient. 
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