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ABSTRACT: Heat and mass transfer in unsteady non-coaxial rotating flow of viscous fluid 

over an infinite vertical disk is derived and obtain the exact solution by Laplace transform 

technique. The motion in the fluid is induced due to two sources. Firstly, due to the 

buoyancy force which is caused because of non-coaxial rotation of a disk such that the disk 

executes cosine or since oscillation in its plane and the fluid is at infinity.The problem is 

modeled in terms of coupled partial differential equations with some physical boundary and 

initial conditions. The dimensionless form of the problem is solved via Laplace transform 

method for exact solutions Expressions for velocity field, temperature and concentration 

distributions are obtained, satisfying all the initial and boundary conditions. Skin friction, 

Nusselt number and Sherwood number are also evaluated. The physical significance of the 

mathematical results is shown in various plots and is discussed for several embedded 

parameters. It is found that magnitude of primary velocity is less than secondary velocity. In 

limiting sense, the present solutions are found identical with published results. 

KEYWORDS:Viscous fluid, Non- coaxial rotation, Primary Velocity, Secondary Velocity,  

Heat and Mass transfer, exact solution 

1. Introduction 

The principal interest of this work is to study the convective transport of momentum, heat 

and mass.Convective transport is of three types namely forced, free and mixed. Forced 

convection occurs when the flow is caused either by external force or by imposing non-

homogeneous boundary condition on velocity. Opposite to the forced convection, in natural 

or free convection, the transport phenomenon occurs due to buoyancy force that arises from 

density differences caused by temperature and concentration variations in the fluid. 

However, a situation where the free and forced convection mechanisms simultaneously and 

significantly contribute to the above transport phenomena is called mixed or combined 

convection.The combined convection phenomenon occurs in many technical and industrial 

problems such as electronic devices cooled by fans,nuclear reactors cooled during an 

emergency shutdown, a heat exchanger placed in a low-velocity environment, and solar 

collector[1,2].Over the time various publications on mixed convection with different 

boundary conditions and situations appeared For example, some of the most recent and 

interesting studies we discuss here.Hussanan et al.[3] investigated thermal diffusion, 

mailto:rluxmath@gmail.com


                                                     ISSN: 2366-1313 

3352 

Volume IX     Issue I     May 2024                 www.zkginternational.com 

 

chemical reaction, heat absorption and Newtonian heating effects on mixed convection flow 

of viscous fluid with combined heat and mass transfer.Srinivasacharya and Reddy [4] 

studied chemical reaction and radiation effects on mixed convection heat and mass transfer 

over a vertical plate in power-law fluid saturated porous medium.Bhukta et al.[5] analyzed 

dissipation effect on MHD mixed convection flow over a stretching sheet through porous 

medium with non-uniform heat source/sink. Raju et al.[6] examined heat and mass transfer 

in MHD mixed convection flow on a moving inclined porous plate. Hayat et L. [7] studied 

three dimensional mixed convection flow of viscoelastic fluid with thermal radiation and 

convective heat transfer flow of the fluid with thermal radiation and convection heat transfer 

flow of the fluid with thermal radiation and convective conditions. Ellahi et al. [8] focused 

on mixed convection heat transfer flow of the fluid over wedge with a porous medium. 

Besides that, an analysis on the mixed convection flow under a constant heat flux through a 

square cavity with a wavy wall has been performed by Mamourian et al. [9].Babulal and 

Talukdar [10] investigated combined effects of Joule heating and chemical reaction on 

unsteady magneto hydrodynamic mixed convection of a viscous dissipating fluid over a 

vertical plate in porous media with thermal radiation. Similarly, Khan et al. [11] discussed 

the effects of heat and mass transfer on magneto hydrodynamics (MHD) flow in a porous 

channel. Samiluhaq et al [12] also investigated the phenomenon of heat and mass transfer 

with MHD flow past a vertical plate with ramped wall temperature. Then, Ali et al.[13] 

analyzed the combined processes of heat and mass transfer by considering the chemical 

reaction in the fluid flow. In addition, Nadeem et al.[14] examined the heat and mass 

transfer analysis of the fluid flow through eccentric cylinders and followed by Nadeem et 

al.[15],where a problem on heat and mass transfer over a vertical rectangular duct is 

investigated. The influence of tapered stenosed artery of permeable wall on combined heat 

and mass transfer in blood flow has been investigated by Ellahi et al. [16].The flow between 

two Non- parallel plane wllas with the effect of heat and mass transfer has been presented by 

Adan et al.[17].Other than that, Khan et al.[18] discussed heat transfer in the fluid flows 

between two parallel plates. This is the opposite physical study with [17]. Next, two related 

problems of heat and mass transfer have been solved by Khan et al.[19,20] but cent rated on 

permeable stretching surface saturated by porous medium with a convective boundary 

condition[19] and flow over a moving wedge with the effect of MHD[20].Besides that, 

Khan et al [21] studied the effect of heat transfer in rotating channel with lower stretching 

permeable wall.On the other hand, Ismail et al.[22,23] considered the rotating fluid in heat 

and mass transfer with the inclined plate.It was found that, as inclination angle increased, the 

fluid flow in primary and secondary flow was decreased. Islam et al [24], 

Muthucumaraswamy et al [25, 26] and Mohyud -Din et al.[27] also investigated the reaction 

of heat and mass transfer in a rotating fluid. 

However, In the context of above background, the transport phenomenon of momentum, 

heat and mass is studied either in rotating or in non-rotating frame.In this work, we assume 

that this transport is in frame with non- coaxial rotation. This idea of non- coaxial rotation 

with heat and mass transfer over an oscillating disk is not investigated yet. However, similar 

studies of non- coaxial rotation, for only momentum transfer, are available in the literature. 

Among them, Erdogan [28] obtained an exact solution for non- coaxial rotation of viscous 

fluid through a porous disk Asghar et al [30] extended Hayat et al. [29] problem for 

accelerated porous disk. In addition Curia et al. [31] introduced a new knowledge of non-

coaxial rotation by taking the hall current effect into hydro magnetic flow over an infinite 

porous disk. After that, an electrically conducting viscous fluid between two parallel 

eccentric rotating disks has been studied by Maji et al. [32].Curia et al. [33] and Ahmad et al 
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[34] introduced velocity slip in non-coaxial rotation. Recently, Das et al. [35,36] studied the 

effects of hall currents and slip condition on non-coaxial rotation viscous fluid through an 

infinite porous disk. Furthermore, Das et al. [37] concentrated on the problem of eccentric 

concentric rotation of a disk due to non- coaxial rotating also has been investigated by 

Lakshmi et al [38] and Ersoy et al.[39-41]. An interesting problem of non- coaxial rotation 

with heat transfer has been solved by Mohammad et al. [42] where they studied the effect of 

free convection on fluid motion. 

Based on the above discussion, the present work aims to study the combined effects of heat 

and mass transfer on mixed convection flow of an incompressible viscous fluid over an 

oscillating an infinite vertical disk with non- coaxial rotation and fluid at infinity.The 

problem is first modeled and then solved for the exact solution using Laplace transform 

technique. Results are plotted and discussed for differ parameters of interest. 

 

Figure 1 

2. Mathematical formulation of the problem 

Let us consider a Cartesian coordinate system with z-axis normal to a rigid disk. The x-axis 

is taken in upward direction along the disk and z-axis is taken normal to the plane of the 

disk. The axes of rotation for both the disk and fluid are assumed to be in plane x =0. 

Initially, at t= 0, the disk and fluid at infinity are rotating about z
’
 axis with the same angular 

velocity Ω with temperature 𝑇∞ and concentration𝐶∞. After time t>0, the disk suddenly 

starts to oscillate and rotates about z-axis with uniform angular velocityΩ while the fluid at 

infinity continues to rotate about z
’
-axis with the same angular velocity as that of the disk. 

The temperature of the disk and concentration raise to 𝑇∞and 𝐶∞ respectively. The distance 

between the two axes of rotation is equal to 𝑙. The physical sketch of the problem is shown 

in Fig.1. Under the above assumptions, we seek solutions for velocity field, temperature and 

concentration distributions of the forms 𝑉 = (𝑢(𝑧, 𝑡), 𝑣(𝑧, 𝑡), 0), 𝑇 = 𝑇(𝑧, 𝑡)𝑎𝑛𝑑𝐶 = 𝐶(𝑧, 𝑡),            (1.1) 𝑢(𝑧, 𝑡) = −Ω𝑦 + 𝑓(𝑧, 𝑡), 𝑣(𝑧, 𝑡) = −Ω𝑥 + 𝑔(𝑧, 𝑡)             (1.2) 

Under the above assumptions and by using the usual Boussinesq approximations the 

equations governing the flow [11, 12, 23, 25, 42] 
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1𝜌 𝜕𝑝𝜕𝑥 − Ω2 = 𝑣 𝜕2𝑓𝜕𝑧2 − 𝜕𝑓𝜕𝑡 + Ω𝑔 + 𝑔𝑥𝛽𝑇(𝑇 − 𝑇∞) + 𝑔𝑥𝛽𝑐(𝐶 − 𝐶∞)           (1.3) 

1𝜌 𝜕𝑝𝜕𝑦 − Ω2𝑦 = 𝑣 𝜕2𝑓𝜕𝑧2 − 𝜕𝑔𝜕𝑡 − Ω𝑓                                     (1.4) 𝜌𝑐𝑝 𝜕𝑇𝜕𝑡 = 𝑘 𝜕2𝑇𝜕𝑧2                                                              (1.5) 𝜕𝐶𝜕𝑡 = 𝐷 𝜕2𝐶𝜕𝑧2                                                              (1.6) 

With boundary conditions corresponding to [11, 12,23, 25,42] 𝑢(0, 𝑡) = −Ω𝑦 + 𝑈𝐻(𝑡) cos(𝜔𝑡) 𝑜𝑟 𝑢(0, 𝑡) = −Ω𝑦 + 𝑈𝑠𝑖𝑛(𝜔𝑡); ∀𝑡 > 0 𝑣(0, 𝑡) = Ω𝑥; ∀𝑡 > 0, 𝑇(0, 𝑡) = 𝑇𝑤;  ∀𝑡 > 0,  𝐶(0, 𝑡) = 𝐶𝑤;  ∀𝑡 > 0,                           (1.7) 𝑢(∞, 𝑡) = −Ω(𝑦 − 𝑙) , 𝑣(∞, 𝑡) = Ω𝑥, 𝑇(∞, 𝑡) = 𝑇∞,  𝐶(∞, 𝑡) = 𝐶∞;  ∀𝑡 > 0,                           (1.8) 

And initial conditions : 𝑢(𝑧, 0) = −Ω(𝑦 − 𝑙) , 𝑣(𝑧, 0) = Ω𝑥, 𝑇(𝑧, 0) = 𝑇∞,  𝐶(𝑧, 0) = 𝐶∞;  ∀𝑡 > 0,                                                       (1.9) 

where 𝜌 is density of fluid, p is the pressure, v is the kinematic viscosity 𝛽𝑇 and𝛽𝐶are the 

coefficient of thermal expansion for temperature and concentration, 𝑔𝑥is the gravitational 

acceleration in x-direction, 𝑇 = 𝑇(𝑧, 𝑡) is the temperature, 𝑐𝑝 is the specific heat, k is the 

thermal conductivity, 𝐶 = 𝐶(𝑧, 𝑡) is the concentration, D is mass diffusivity, H(t) is 

Heaviside function, 𝜔 is a frequency of oscillation, U is the characteristic velocity in x and 

y-directions. 

By taking 𝑥2 + 𝑦2 = 𝑟2, �̂� = 𝑝 − 𝜌2 Ω2𝑟2 as the modified pressure that equation 

(1.1)-(1.2) take the following forms: 𝑣 𝜕2𝑓𝜕𝑧2 − 𝜕𝑓𝜕𝑡 + Ω𝑔 + 𝑔𝑥𝛽𝑇(𝑇 − 𝑇∞) + 𝑔𝑥𝛽𝑐(𝐶 − 𝐶∞) = 1𝜌 𝜕𝑝𝜕𝑥                     (1.10) 𝑣 𝜕2𝑔𝜕𝑧2 − 𝜕𝑔𝜕𝑡 − Ω𝑓 = 1𝜌 𝜕𝑝𝜕𝑦                                    (1.11) 

Where 
𝜕𝑝𝜕𝑥 and 

𝜕𝑝𝜕𝑦 are the modified pressure gradients. Differentiating eqs (1.10) and (1.11) 

with respect to z and using
𝜕𝑝𝜕𝑧 = 0, we get: 
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𝜕𝜕𝑧 [𝑣 𝜕2𝑓𝜕𝑧2 − 𝜕𝑓𝜕𝑡 + Ω𝑔 + 𝑔𝑥𝛽𝑇(𝑇 − 𝑇∞) + 𝑔𝑥𝛽𝑐(𝐶 − 𝐶∞)] = 0 

Integration with respect to z 𝑣 𝜕2𝑓𝜕𝑧2 − 𝜕𝑓𝜕𝑡 + Ω𝑔 + 𝑔𝑥𝛽𝑇(𝑇 − 𝑇∞) + 𝑔𝑥𝛽𝑐(𝐶 − 𝐶∞) = 𝑐1(𝑡)                    (1.12) 

Differential equations (1.10) with respectto z 𝜕𝜕𝑧 [𝑣 𝜕2𝑔𝜕𝑧2 − 𝜕𝑔𝜕𝑡 − Ω𝑓] = 𝜕𝜕𝑧 [1𝜌 𝜕�̂�𝜕𝑦] 

Apply 
𝜕𝑝𝜕𝑧 = 0 𝜕𝜕𝑧 [𝑣 𝜕2𝑔𝜕𝑧2 − 𝜕𝑔𝜕𝑡 − Ω𝑓] = 0 

Integration (1.11) with respect to z 𝑣 𝜕2𝑔𝜕𝑧2 − 𝜕𝑔𝜕𝑡 − Ω𝑓 = 𝑐2(𝑡)                                     (1.13) 

Where 𝑐1(𝑧, 𝑡) and 𝑐2(𝑧, 𝑡) are constant values. Since the fluid at infinity has no shear stress, 

all the derivatives of f and g are zero. After using Equation (1.8), Equation (1.12) and (1.13) 

reduce to the following forms: 𝑢(∞, 𝑡) = −Ω(𝑦 − 𝑙) , 𝑣(∞, 𝑡) = Ω𝑥, 𝑇(∞, 𝑡) = 𝑇∞,  𝐶(∞, 𝑡) = 𝐶∞;  𝑦 → 0 𝑎𝑛𝑑𝑥 → 0 𝑢(∞, 𝑡) = Ω𝑙; 𝜕𝑢𝜕𝑡 = 0  𝜕2𝑢𝜕𝑧2 = 0, 𝑣(∞, 𝑡) = 0; 𝜕𝑣𝜕𝑡 = 0  𝜕2𝑓𝜕𝑧 = 0 

𝑇(∞, 𝑡) = 𝑇∞;  𝜕𝑇𝜕𝑡 = 0  𝜕𝑔𝜕𝑧 = 0, 𝐶(∞, 𝑡) = 𝐶∞;  𝜕𝐶𝜕𝑡 = 0  𝜕𝑔𝜕𝑧 = 0 

When applying condition  𝑐1(𝑡) = 0 𝑢(0) − 0 − Ω(Ω𝑙) = 𝑐2(𝑡) 𝑐2(𝑡) = −Ω2𝑙 Sub in (1.13) equation (1.12) and (1.13) becomes 𝑣 𝜕2𝑓𝜕𝑧2 − 𝜕𝑓𝜕𝑡 + Ω𝑔 = −𝑔𝑥𝛽𝑇(𝑇 − 𝑇∞) − 𝑔𝑥𝛽𝑐(𝐶 − 𝐶∞)           (1.14) 𝑣 𝜕2𝑔𝜕𝑧2 − 𝜕𝑔𝜕𝑡 − Ω𝑓 + Ω2𝑙 = 0      (1.15) 

Using Equation(1.2) the corresponding initial and boundary conditions become: 𝑓(𝑧, 0) = Ω𝑙, 𝑔(𝑧, 0) = 0; ∀𝑧 > 0,              (1.16) 𝑓(𝑜, 𝑡) = 𝑈𝐻(𝑡) cos(𝜔𝑡)𝑜𝑟𝑓(0, 𝑡) = 𝑈𝑠𝑖𝑛(𝜔𝑡), 𝑔(𝑜, 𝑡) = 0; ∀𝑡 > 0, 𝑓(∞, 𝑡) = Ω𝑙, 𝑔(∞, 0) = 0; ∀𝑡 > 0,                                     (1.17) 

Now, we combine Equations (1.14) and (1.15), using 𝐹 = 𝑓 + 𝑖𝑔 [29, 42] with the 
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corresponding initial and boundary conditions (1.16) and (1.17) as follows: 𝑣 𝜕2𝐹𝜕𝑧2 − 𝜕𝐹𝜕𝑡 − 𝑖Ω𝑓 + iΩ2𝑙 = −𝑔𝑥𝛽𝑇(𝑇 − 𝑇∞) − 𝑔𝑥𝛽𝑐(𝐶 − 𝐶∞)          (1.18)  𝐹(𝑧, 0) = Ω𝑙; ∀𝑧 > 0,                (1.19) 𝐹(𝑜, 𝑡) = 𝑈𝐻(𝑡) cos(𝜔𝑡)𝑜𝑟𝐹(0, 𝑡) = 𝑈𝑠𝑖𝑛(𝜔𝑡), 𝑔(𝑜, 𝑡) = 0; ∀𝑡 > 0, 𝐹(∞, 𝑡) = Ω𝑙; ∀𝑧 > 0.               (1.20) 

Introducing the following non-dimensional variables [11, 12, 23, 25, 31, 38, 42]: 𝐹∗ = 𝐹
Ω𝑙 − 1, 𝑧∗ = √Ω𝑣 𝑧, 𝑡∗ = Ω𝑡, 𝜔∗ = 𝜔

Ω
, 𝑇∗ = 𝑇−𝑇∞𝑇𝜔−𝑇∞          (1.21) 

𝑐∗ = 𝐶 − 𝐶∞𝐶𝜔 − 𝐶∞
 

The system of equations reduces to (dropping out the *notations) 𝜕2𝐹𝜕𝑧2 − 𝜕𝐹𝜕𝑡 − 𝑖𝐹 = −𝐺𝑟𝑇 − 𝐺𝑚𝐶      

 (1.22)𝐹(𝑧, 𝑜) = 0, ∀𝑧 > 0, 𝐹(𝑜, 𝑡) = −1 + 𝑈0𝐻(𝑡) cos(𝜔𝑡) ; 𝑜𝑟 𝐹(𝑜, 𝑡) = −1 + 𝑈𝑠𝑖𝑛(𝜔𝑡), 𝐹(∞, 𝑡) = 0; ∀𝑡 > 0,           (1.23) 𝜕𝑇𝜕𝑡 = 1𝑃𝑟 𝜕2𝑇𝜕𝑧2,                                                         (1.24) 𝑇(𝑧, 0) = 0; ∀𝑧 > 0, 𝑇(0, 𝑡) = 1, 𝑇(∞, 𝑡) = 0; ∀𝑧 > 0,          (1.25) 𝜕𝐶𝜕𝑡 = 1𝑆𝑐 𝜕2𝐶𝜕𝑧2,                (1.26) 𝐶(𝑧, 0) = 0; ∀𝑧 > 0, 𝐶(0, 𝑡) = 1, 𝐶(∞, 𝑡) = 0; ∀𝑡 > 0,          (1.27) 

Where 𝐺𝑟 = 𝑔𝑥𝛽𝑇
Ω2𝑙 (𝑇𝑤 − 𝑇∞), 𝐺𝑚 = 𝑔𝑥𝛽𝐶

Ω2𝑙 (𝐶𝑤 − 𝐶∞), 𝑃𝑟 = 𝜇𝑐𝑝𝑘 , 𝑆𝑐 = 𝑣𝐷 , 𝑈0 = 𝑈
Ω𝑙 

Here, Gr is the Grash of number, Gm. is modified Grash of number, Pr is Prandtl number, 

Sc is Schmidt number and U0 is dimensionless parameter of amplitude of the plate 

oscillations. 

Solution of the problem 

In order to solve the system of Equations(1.22)- (1.27), we use Laplace transform method 

and obtain: 

𝑑2𝐹𝑑𝑧2 − (𝑞 + 𝑖)�̅�=−𝐺𝑟�̅� − 𝐺𝑚𝐶̅                        (1.28)  𝐿{𝐹(0, 𝑡)} = 𝐿[−1] + 𝐿[𝑈0𝐻(𝑡)𝑐𝑜𝑠𝜔𝑡] �̅�(0, 𝑞) = − 1𝑞 + 𝑈0𝑞𝑞2 + 𝜔2 𝐿[𝐹(0, 𝑡)] = 𝐿[−1] + 𝐿(𝑈0𝑠𝑖𝑛𝜔𝑡)Or  �̅�(0, 𝑞) = − 1𝑞 + 𝑈0 𝜔𝑞2+𝜔2 , �̅�(∞, 𝑞) = 0                                 (1.29) 
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𝐿 [𝜕𝑇𝜕𝑡] = 𝑞𝑇 = 1𝑃𝑟 𝜕2�̅�𝜕𝑧2 𝑑2�̅�𝑑𝑧2 − 𝑞𝑃𝑟�̅� = 0,                          (1.30) 𝐿[𝑇(0, 𝑡)] = �̅�(0,q)= L[1] �̅�(0, 𝑞) = 1𝑞 , �̅�(∞, 𝑞) = 0              (1.31) 𝑑2�̅�𝑑𝑧2 − 𝑞𝑆𝑐𝐶̅ = 0,                          (1.32) 𝐶̅(0, 𝑞) = 1𝑞 , 𝐶̅(∞, 𝑞) = 0                                                          (1.33) 

Now, Equations (1.28),(1.30) and (1.32) are solved using boundary condition (1.29), (1.31) 

and (1.33), and then, the inverse Laplace transforms of the resultant solutions are obtained as 

follows: 𝐹𝑐(𝑧, 𝑡) = 𝐹1(𝑧, 𝑡) − 𝐹2(𝑧, 𝑡) + 𝐹3(𝑧, 𝑡) + 𝐹4(𝑧, 𝑡) + 𝐹5(𝑧, 𝑡) − 𝐹6(𝑧, 𝑡) + 𝐹7(𝑧, 𝑡) −𝐹8(𝑧, 𝑡) + 𝐹9(𝑧, 𝑡 )                                     (1.34) 𝐹𝑠(𝑧, 𝑡) = 𝐹1(𝑧, 𝑡) − 𝐹2(𝑧, 𝑡) + 𝐹3(𝑧, 𝑡) + 𝐹10(𝑧, 𝑡) − 𝐹11(𝑧, 𝑡) − 𝐹6(𝑧, 𝑡) + 𝐹7(𝑧, 𝑡) −𝐹8(𝑧, 𝑡) + 𝐹9(𝑧, 𝑡)                          (1.35) 𝑇(𝑧, 𝑡) = 𝑒𝑟𝑓𝑐 (𝑧√𝑃𝑟2√𝑡 )               (1.36) 𝐶(𝑧, 𝑡) = 𝑒𝑟𝑓𝑐 (𝑧√𝑆𝑐2√𝑡 )               (1.37) 𝐹1(𝑧, 𝑡 = 𝑏22 exp(𝑏1𝑡) [exp(−𝑧√𝑏1 + 𝑖) 𝑒𝑟𝑓𝑐 ( 𝑧2√𝑡 − √(𝑏1 + 𝑖)𝑡)
+ exp(𝑧√𝑏1 + 𝑖) 𝑒𝑟𝑓𝑐 ( 𝑧2√𝑡 + √(𝑏1 + 𝑖)𝑡)] 

𝐹2(𝑧, 𝑡) = 𝑒3 12 [exp(−𝑧√𝑖) 𝑒𝑟𝑓𝑐 ( 𝑧2√𝑡 − √𝑖𝑡) + exp(𝑧√𝑖) 𝑒𝑟𝑓𝑐 ( 𝑧2√𝑡 + √𝑖𝑡)] 

𝐹3(𝑧, 𝑡) =  𝑒22 exp(𝑒1𝑡) exp(−𝑧√𝑒1 + 𝑖) 𝑒𝑟𝑓𝑐 ( 𝑧2√𝑡 − √(𝑒1 + 𝑖)𝑡)
+  exp(𝑧√𝑒1 + 𝑖) 𝑒𝑟𝑓𝑐 ( 𝑧2√𝑡 + √(𝑒1 + 𝑖)𝑡)] 

𝐹4(𝑧, 𝑡) = 𝑏22 H(t)exp(𝑖𝜔𝑡) [exp(−𝑧√𝑖𝜔 + 𝑖) 𝑒𝑟𝑓𝑐 ( 𝑧2√𝑡 − √𝑖𝜔𝑡 + 𝑖𝑡)      
+ exp 𝑧√𝑖𝜔 + 𝑖 𝑒𝑟𝑓𝑐 ( 𝑧2√𝑡 + √(𝑒1 + 𝑖)𝑡)] 
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𝐹5(𝑧, 𝑡) = 𝑏32 H(t)exp(−𝑖𝜔𝑡) [exp(−𝑧√𝑖 − 𝑖𝜔) 𝑒𝑟𝑓𝑐 ( 𝑧2√𝑡 − √𝑖𝑡 − 𝑖𝜔𝑡)     
+ exp 𝑧√𝑖 − 𝑖𝜔 𝑒𝑟𝑓𝑐 ( 𝑧2√𝑡 + √𝑖𝑡 − 𝑖𝜔𝑡)] 

 𝐹6(𝑧, 𝑡) = 𝑏22 exp(𝑏1𝑡) [ exp(−𝑧√𝑃𝑟𝑏1) 𝑒𝑟𝑓𝑐 (𝑧2 √𝑃𝑟𝑡 − √𝑏1𝑡)
+ exp 𝑧√𝑃𝑟𝑏1 𝑒𝑟𝑓𝑐 (𝑧2 √𝑃𝑟𝑡 + √𝑏1𝑡)] 

𝐹7(𝑧, 𝑡) = 𝑏2erfc (𝑧2 √𝑃𝑟𝑡 ) 

𝐹8(𝑧, 𝑡) = 𝑒22 exp(𝑒1𝑡) [exp(−𝑧√𝑒1𝑆𝑐) 𝑒𝑟𝑓𝑐 (𝑧2 √𝑆𝑐𝑡 √𝑒1𝑡) + exp 𝑧√𝑒1𝑆𝑐 𝑒𝑟𝑓𝑐 (𝑧2 √𝑆𝑐𝑡
+ √𝑒1𝑡)] 

𝐹9(𝑧, 𝑡) = 𝑒2erfc (𝑧2 √𝑆𝑐𝑡 ) 

𝐹10(𝑧, 𝑡) = 𝑏72 exp(𝑖𝜔𝑡)[exp(−𝑧√𝑖𝜔 + 𝑖) 𝑒𝑟𝑓𝑐 ( 𝑧2√𝑡 − √𝑖𝜔𝑡 + 𝑖𝑡)
+ exp 𝑧√𝑖𝜔 + 𝑖 𝑒𝑟𝑓𝑐 ( 𝑧2√𝑡 + √𝑖𝜔𝑡 + 𝑖𝑡)] 

 𝐹11(𝑧, 𝑡) = 𝑏72 exp(−𝑖𝜔𝑡) [exp(−𝑧√𝑖 − 𝑖𝜔) 𝑒𝑟𝑓𝑐 ( 𝑧2√𝑡 − √𝑖𝑡 − 𝑖𝜔𝑡)     
+ exp (𝑧√𝑖 − 𝑖ω𝑒𝑟𝑓𝑐(+√𝑖𝑡 − 𝑖𝜔𝑡)] 

Where 𝑎1 = 𝑃𝑟 − 1, 𝑏1 = 𝑖𝑎1 , 𝑎2 = 𝑆𝑐 − 1, 𝑒1 = 𝑖𝑎2 , 𝑏2 = 𝐺𝑟𝑎1𝑏1 , 𝑏3 = 𝑈02 ,  𝑒2 = 𝐺𝑚𝑎1𝑒1 , 𝑒3 = 𝑏2 + 𝑒2 + 1 𝑎𝑛𝑑 𝑏7 = 𝑈02𝑖 .  

It is important to note that solutions (1.34) and (1.35) are not valid for Pr=1 or Sc=1 as well 

as for Pr=1 and Sc=1. Therefore, we calculate separately solution of velocity for these cases 

in the following: 

When𝑃𝑟 = 1 𝑎𝑛𝑑 𝑆𝑐 ≠ 1: 
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𝐹𝑐(𝑧, 𝑡) = 𝐹3(𝑧, 𝑡) − 𝐹12(𝑧, 𝑡) + 𝐹4(𝑧, 𝑡) + 𝐹5(𝑧, 𝑡) + 𝐹13(𝑧, 𝑡) − 𝐹8(𝑧, 𝑡) + 𝐹9(𝑧, 𝑡)    (1.38) 𝐹𝑠(𝑧, 𝑡) = 𝐹3(𝑧, 𝑡) − 𝐹12(𝑧, 𝑡) + 𝐹10(𝑧, 𝑡) − 𝐹11(𝑧, 𝑡) + 𝐹13(𝑧, 𝑡) − 𝐹8(𝑧, 𝑡) + 𝐹9(𝑧, 𝑡) (1.39) 

Where 𝐹12(𝑧, 𝑡) = 𝑒42 [exp(−𝑧√𝑖) 𝑒𝑟𝑓𝑐 ( 𝑧2√𝑡 − √𝑖𝑡) + exp(𝑧√𝑖) 𝑒𝑟𝑓𝑐 ( 𝑧2√𝑡 + √𝑖𝑡)] 

𝐹13(𝑧, 𝑡) = 𝑏5erfc ( 𝑧2√𝑡) 

Where 𝑏5 = 𝐺𝑟 𝑖  𝑎𝑛𝑑 𝑒4 = 𝑏5 + 𝑒2 + 1 

When Sc=1 and 𝑃𝑟 ≠ 1 𝐹𝑐(𝑧, 𝑡) = 𝐹1(𝑧, 𝑡) − 𝐹14(𝑧, 𝑡) + 𝐹4(𝑧, 𝑡) + 𝐹5(𝑧, 𝑡) − 𝐹6(𝑧, 𝑡) + 𝐹7(𝑧, 𝑡) + 𝐹15(𝑧, 𝑡)    (1.40) 𝐹𝑠(𝑧, 𝑡) = 𝐹1(𝑧, 𝑡) − 𝐹14(𝑧, 𝑡) + 𝐹10(𝑧, 𝑡) − 𝐹11(𝑧, 𝑡) − 𝐹6(𝑧, 𝑡) + 𝐹7(𝑧, 𝑡) + 𝐹15(𝑧, 𝑡)  

                  (1.41) 𝐹14(𝑧, 𝑡) = 𝑒62 [exp(−𝑧√𝑖) 𝑒𝑟𝑓𝑐 ( 𝑧2√𝑡 − √𝑖𝑡) + exp(𝑧√𝑖) 𝑒𝑟𝑓𝑐 ( 𝑧2√𝑡 + √𝑖𝑡)], 
𝐹15(𝑧, 𝑡) = 𝑒5erfc ( 𝑧2√𝑡) 

Where 𝑒5 = 𝐺𝑚 𝑖  𝑎𝑛𝑑 𝑒6 = 𝑏2 + 𝑒5 + 1 

When Pr=1 and Sc=1: 𝐹𝑐(𝑧, 𝑡) = 𝐹4(𝑧, 𝑡) + 𝐹5(𝑧, 𝑡) − 𝐹16(𝑧, 𝑡)             (1.42) 𝐹𝑠(𝑧, 𝑡) = 𝐹10(𝑧, 𝑡) − 𝐹11(𝑧, 𝑡) − 𝐹16(𝑧, 𝑡)             (1.43) 𝐹14(𝑧, 𝑡) = 𝑏82 [exp(−𝑧√𝑖) 𝑒𝑟𝑓𝑐 ( 𝑧2√𝑡 − √𝑖𝑡) + exp(𝑧√𝑖) 𝑒𝑟𝑓𝑐 ( 𝑧2√𝑡 + √𝑖𝑡)],        (1.44) 

Where, 𝑏8 = 𝑏5 + 𝑒5 + 1. 
Skin friction, Nusselt number and Sherwood number 

The expressions of the dimensional skin friction are given by [11, 13, 42]: 𝜏 = − [𝜇 𝜕𝐹𝜕𝑧]𝑧=0               (1.45) 

Which in non-dimensional form reduces to: 𝜏∗ = − [𝜇 𝜕𝐹∗𝜕𝑧∗]𝑧∗=0               (1.46) 

Where 𝜏∗ = √𝑣𝜇𝑙Ω
32 𝜏 finally, Equation.(1.46), in view of equations (1.34) and (1.35), gives 

(dropping out the * notation): 𝜏𝑐(𝑧, 𝑡) = 𝜏1(𝑧, 𝑡) − 𝜏2(𝑧, 𝑡) + 𝜏3(𝑧, 𝑡) + 𝜏4(𝑧, 𝑡) + 𝜏5(𝑧, 𝑡) − 𝜏6(𝑧, 𝑡) + 𝜏7(𝑧, 𝑡) −𝜏8(𝑧, 𝑡) + 𝜏9(𝑧, 𝑡)              (1.47) 𝜏𝑠(𝑧, 𝑡) = 𝜏1(𝑧, 𝑡) − 𝜏2(𝑧, 𝑡) + 𝜏3(𝑧, 𝑡) + 𝜏10(𝑧, 𝑡) − 𝜏11(𝑧, 𝑡) − 𝜏6(𝑧, 𝑡) + 𝜏7(𝑧, 𝑡) −
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𝜏8(𝑧, 𝑡) + 𝜏9(𝑧, 𝑡)              (1.48) 

 𝜏1(𝑧, 𝑡) = 𝑏22 exp(𝑏1𝑡)2 [√𝑏1 + 𝑖𝑒𝑟𝑓𝑐(−√𝑏1𝑡 + 𝑖𝑡) − √𝑏1 + 𝑖 𝑒𝑟𝑓𝑐 2√𝜋𝑡 exp (−(𝑏1𝑡 + 𝑖𝑡))] 
 𝜏2(𝑧, 𝑡) = −𝑒3 12 [√𝑖𝑒𝑟𝑓𝑐(−√𝑖𝑡) − √𝑖𝑒𝑟𝑓𝑐 (√𝑖𝑡) + 2√𝜋𝑡 exp (−𝑖𝑡)] 

   𝜏3(𝑧, 𝑡) = −𝑒2 exp(𝑒1𝑡)2 [√𝑒1 + 𝑖𝑒𝑟𝑓𝑐(√𝑒1𝑡 + 𝑖𝑡)
− √𝑒1 + 𝑖𝑒𝑟𝑓𝑐 (√𝑒1𝑡 + 𝑖𝑡) + 2√𝜋𝑡 exp (−(𝑒1𝑡 + 𝑖𝑡)] 

𝜏4(𝑧, 𝑡) = −𝑏3𝐻(𝑡) exp(𝑖𝜔𝑡)2 [√𝑖 + 𝜔𝑖𝑒𝑟𝑓𝑐(−√𝑖𝑡 + 𝑖𝜔𝑡)
− √𝑖 + 𝜔𝑖 𝑒𝑟𝑓𝑐 (√𝑖𝑡 + 𝑖𝜔𝑡) + 2√𝜋𝑡 exp (−(𝑖𝑡 + 𝑖𝜔𝑡)] 

 𝜏5(𝑧, 𝑡) = − 𝑏3 𝐻(𝑡) exp(−𝑖𝜔𝑡)2 [√𝑖 − 𝜔𝑖𝑒𝑟𝑓𝑐(−√𝑖𝑡 − 𝑖𝜔𝑡)
− √𝑖 − 𝜔𝑖 𝑒𝑟𝑓𝑐 (√𝑖𝑡 − 𝑖𝜔𝑡) + 2√𝜋𝑡 exp (−(𝑖𝑡 − 𝑖𝜔𝑡)] 

 𝜏6(𝑧, 𝑡) = −𝑏2 exp (𝑏1𝑡)2 [√𝑃𝑟𝑏1𝑒𝑟𝑓𝑐(−√𝑏1𝑡)
− √𝑃𝑟𝑏1𝑒𝑟𝑓𝑐 (√𝑏1𝑡) + 2√𝑃𝑟𝜋𝑡 exp (−(𝑖𝑡 − 𝑖𝜔𝑡))] 𝜏7(𝑧, 𝑡) = 𝑏2 (√𝑃𝑟𝜋𝑡) 

𝜏8(𝑧, 𝑡) = −𝑒2 exp(𝑒1𝑡)2 [√𝑒1𝑆𝑐𝑒𝑟𝑓𝑐(−√𝑒1𝑡) − √𝑒1𝑆𝑐𝑒𝑟𝑓𝑐 (√𝑒1𝑡) − 2√𝑆𝑐𝜋𝑡 exp (−𝑒1𝑡)] 

𝜏9(𝑧, 𝑡) = 𝑒2√𝑆𝑐𝜋𝑡 

𝜏10(𝑧, 𝑡) = −𝑏7 exp(iω𝑡)2 [√𝑖 + 𝑖𝜔 𝑒𝑟𝑓𝑐(−√𝑖𝑡 + 𝑖𝜔𝑡)
+ √𝑖 + 𝜔𝑖𝑒𝑟𝑓𝑐(√𝑖𝑡 + 𝑖𝜔𝑡) + 2𝜋𝑡 exp(−(𝑖𝑡 + 𝑖𝜔𝑡))] 𝜏11(𝑡)= −𝑏7 exp(iω𝑡)2 [√𝑖 − 𝑖𝜔 𝑒𝑟𝑓𝑐(−√𝑖𝑡 − 𝑖𝜔𝑡)√𝑖 − 𝜔𝑖𝑒𝑟𝑓𝑐(√𝑖𝑡 − 𝑖𝜔𝑡) + 2𝜋𝑡 exp(−(𝑖𝑡− 𝑖𝜔𝑡))] 
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The rate of heat transfer (Nusselt number) and rate of mass transfer (Sherwood number) are 

given as [11, 13, and 42]: 𝑁𝑢 = [𝜕𝑇𝜕𝑧]𝑧=0                (1.49) 𝑁𝑢 = √𝑃𝑟√𝜋𝑡                (1.50) 𝑆h =  [𝜕𝐶𝜕𝑧]𝑧=0                (1.51) 𝑆h = √𝑆𝑐√𝜋𝑡                (1.52) 

MATLAB Coding  

%Velocity profile 

clc; 

ncx = complex(0,1); 

t= 2.50; 

Pr = 0.710; 

Sc = 0.60; 

omga = 0.0; 

U0 = 3.0; 

Gm = 5.0; 

Gr = 5.0; 

Za = 0.0:0.01:5.0; 

z= Za'; 

a1 = Pr - 1.0; 

b1 = ncx/a1; 

a2 = Sc - 1.0; 

e1 = ncx/a2; 

b2 = Gr/(a1*b1); 

b3 = U0/2.0; 

e2 = Gm/(a2*e1); 

e3 = b2 + e2 + 1.0; 

b7 = U0/(2.0*ncx); 

F1 = ((b2*exp(b1*t))/2.0)*( exp(-z.*sqrt(b1 + ncx)).*( 1.0 - erfz((z./(2.0*sqrt(t))) -sqrt((b1 + 

ncx)*t) ) )+exp(z.*sqrt(b1 + ncx)).*( 1.0 - erfz((z./(2.0*sqrt(t))) +sqrt((b1 + ncx)*t)))); 

F2 = (e3/2.0)*( exp(-z.*sqrt(ncx)).*( 1.0 - erfz((z./(2.0*sqrt(t))) -sqrt( ncx*t) ))+exp(z.*sqrt( 
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ncx)).*( 1.0 - erfz((z./(2.0*sqrt(t))) +sqrt( ncx*t) )) ); 

F3 = ((e2*exp(e1*t))/2.0)*( exp(-z.*sqrt(e1 + ncx)).*( 1.0 - erfz((z./(2.0*sqrt(t))) -sqrt((e1 + 

ncx)*t) ))+exp(z.*sqrt(e1 + ncx)).*( 1.0 - erfz((z./(2.0*sqrt(t))) +sqrt((e1 + ncx)*t) )) ); 

F4 =((b3*Heaviside(t)*exp(ncx*omga*t))/2.0)*( exp(-z.*sqrt(omga*ncx +ncx)).*( 1.0 - 

erfz((z./(2.0*sqrt(t))) -sqrt((omga*ncx + ncx)*t) ))+exp(z.*sqrt(omga*ncx + ncx)).*( 1.0 - 

erfz((z./(2.0*sqrt(t))) +sqrt((omga*ncx + ncx)*t) )) ); 

F5 =((b3*Heaviside(t)*exp(-ncx*omga*t))/2.0)*( exp(-z.*sqrt(-omga*ncx +ncx)).*( 1.0 - 

erfz((z./(2.0*sqrt(t))) -sqrt((-omga*ncx + ncx)*t) ))+exp(z.*sqrt(-omga*ncx + ncx)).*(1.0 - 

erfz((z./(2.0*sqrt(t))) +sqrt((-omga*ncx + ncx)*t) )) ); 

F6=((b2*exp(b1*t))/2.0)*(exp(-z.*sqrt(Pr*b1)).*(1.0 - erfz((z./2.0).*sqrt(Pr/t) -sqrt(b1*t) 

))+exp(z.*sqrt(Pr*b1)).*(1.0 - erfz((z./2.0).*sqrt(Pr/t) +sqrt(b1*t) )) ); 

F7 =b2* erfc((z./2.0).*sqrt(Pr/t)); 

F8=((e2*exp(e1*t))/2.0)*( exp(-z.*sqrt(Sc*e1)).*(1.0 - erfz((z./2.0).*sqrt(Sc/t) -sqrt(e1*t) 

))+exp(z.*sqrt(Sc*e1)).*(1.0 - erfz((z./2.0).*sqrt(Sc/t) +sqrt(e1*t) )) ); 

F9 = e2* erfc((z./2.0).*(sqrt(Sc/t)) ); 

Fc = F1 - F2 + F3 + F4 + F5 - F6 + F7 - F8 + F9; 

disp(' zFc') 

disp([zFc ]) 

holdon 

plot(z, real(Fc), z, abs(image(Fc))) 

holdoff 

 

 

Fig 1 Velocity profiles for different values of 𝐺𝑟 with 𝑡 = 1.0, 𝑃𝑟 = 0.71, 𝜔 = 𝜋3 , 𝑈0 = 3.0, 𝐺𝑚 = 5.0 𝑎𝑛𝑑 𝑆𝑐 = 0.6 
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Fig 2:Velocity profiles values of 𝑃𝑟 with 𝑡 = 1.0, 𝐺𝑟 = 5.0 𝜔 = 𝜋3 , 𝑈0 = 3.0, 𝐺𝑚 = 5.0 𝑎𝑛𝑑 𝑆𝑐 = 0.6 

 

Fig 3 Velocity profiles values of 𝐺𝑚 with 𝑡 = 1.0, 𝐺𝑟 = 5.0, 𝑃𝑟 = 0.71, 𝜔 = 𝜋3 , 𝑈0 = 3.0, 𝑎𝑛𝑑 𝑆𝑐 = 0.6 
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Fig 4:Velocity profiles values of 𝑆𝑐 with 𝑡 = 1.0, 𝐺𝑟 = 5.0 𝜔 = 𝜋3 , 𝑈0 = 3.0, 𝐺𝑚 = 5.0 𝑎𝑛𝑑 𝑃𝑟 = 0.6 

 

Fig 5 :Velocity profiles values of 𝜔𝑡 with 𝑡 = 1.0, 𝐺𝑟 = 5.0,𝑆𝑐 = 0.6, 𝑈0 = 3.0, 𝐺𝑚 = 5.0 𝑎𝑛𝑑 𝑃𝑟 = 0.71 

 

Fig 6:Velocity profiles for different values of 𝜔𝑡with 𝑡 = 1.0, 𝐺𝑟 = 5.0, 𝑆𝑐 = 0.6, 𝑈0 = 3.0, 𝐺𝑚 = 5.0 𝑎𝑛𝑑 𝑃𝑟 = 0.71 
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Fig 7:Velocity profiles for different values of 𝑡with 𝑈0 = 3.0, 𝐺𝑟 = 5.0, 𝑆𝑐 = 0.6, 𝜔 = 0, 𝐺𝑚 = 5.0𝑎𝑛𝑑 𝑃𝑟 = 0.71 

 

Fig 8 Temperature profiles for the different values oft with 𝑃𝑟 = 0.71 

 

Fig9:Concentrationprofilesfor the different values of 𝑆𝑐 with 𝑡 = 1.0 
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Fig 10 Concentrationprofilesfor the different values of 𝑡with 𝑆𝑐 = 0.60 

 

Fig 11:Comparison of primary velocity in present solution with 

Guria et al[33] 

 

Fig 12:Comparison of secondaryvelocity in present solution withGuria et al[33] 

 

3. Results and Discussion  

Exact solution of heat and mass transfer for incompressible viscous fluid with non-

coaxial rotation through an oscillating disk is obtained. In order to get the physics of the 

regime, the effects of various parameter such a Grashof number, Prandtl number, modified 

Grashof number, Schmidt number.         

4. Summary and Conclusion 

An exact solution for unsteady mixed convection flow of viscous fluid due to non-

coaxial rotation over an oscillating vertical disk with isothermal temperature and constant 

mass diffusion is obtained using the Laplace transform method. Effects of various embedded 

parameters on velocity, temperature and concentration are studied graphically in various 

plots. Results of Skin friction, Nusselt number and Sherwood number are computed in 



                                                     ISSN: 2366-1313 

3367 

Volume IX     Issue I     May 2024                 www.zkginternational.com 

 

different tables. The disk and fluid are rotating with uniform angular velocity which is equal 

to 1 in the present computations. The following main results are concluded from this study: 

1. Both primary and secondary velocities increase with increasing Gr, Gm. and t. 

2. Both primary and secondary velocities decrease with increasing Pr, Sc and ωt. 
3. Temperature increases with increasing t and decreases when Pr is increased. 

4. Concentration increases with increasing t and decreases when Sc is increased. 

5. Skin friction increases with increasing values of Pr, Sc and ωt whereas it decreases with 

increasing values of Gr, Gm. and t 

6. Nusselt number increases for increasing Pr and decreases for increasing t. 

7. Sherwood number increases for increasing Sc and decreases for increasing t. 
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