
ISSN: 2366-1313

846

The Improved Efficiency of Data Mining Via
Hierarchical Analysis for High Data Density in Big Data

Servers
RAMESH BOLLI, Research Scholar, Department of CSE, J.S University, Shikohabad,

U.P.

Dr. SURIBABU POTNURI, Professor, Supervisor, Department of CSE, J.S.
University, Shikohabad, U.P.

Abstract: Big data is a term for massive data sets having large, more varied and complex structure

with the difficulties of storing, analyzing and visualizing for further processes or results. The

process of research into massive amounts of data to reveal hidden patterns and secret correlations

named as big data analytics. These useful information for companies or organizations with the help

of gaining richer and deeper insights and getting an advantage over the competition. For this reason,

big data implementations need to be analyzed and executed as accurately as possible. Utility itemset

mining is an emerging field that identifies multiple relationships between various database items,

which may be utilized as the foundation for a variety of information management and decision-

making systems. This thesis is primarily concerned with developing data mining technique(s) for

extracting patterns of utility- based itemsets from large datasets. The research community has

extensively researched frequent itemset mining to mine such patterns from a transaction database,

where a transaction represents the set of items purchased together by a user. The Frequent Itemset

Mining (FIM) method assumes that all items in a transaction database are of similar relevance.

Customers, however, buy items in varying amounts, and products yield varying revenues. FIM may

produce patterns with a high frequency but low profitability or interest. The FIM rules are prevalent,

although they aren't always interesting. The rules that deviate from expectations are the most

interesting. This paper also presents the implementation of K-means based on the new similarity

measure using MapReduce framework. We introduced novel similarity measure based K-means

algorithm for clustering big data using MapReduce. Inter and Intra-cluster density has been used to

validate the results of the new similarity measure. The results of this new similarity measure helps to

obtain good clustering for big data. This paper presents a smart application for traffic jam and

congestion avoidance in the smart city using parallel k-means algorithm. In this work, we made use

of in-memory computing to get superior performance of parallel K-means algorithm which helps us

to build a real-time application for smart traffic system in the smart city.



ISSN: 2366-1313

847

1. INTRODUCTION

Data mining is an analytical method for

extracting hidden information, trends, and

patterns from a variety of data sources. It is a

set of specific methods and techniques for

extracting patterns from large amounts of data,

as shown in figure 1. According to Williams,

“Data mining is a technology designed with

the objective of enabling data exploration,

data analysis, as well as data visualization of

large databases at a high level of abstraction

without any specific hypothesis in mind”

(William et al.,1998). Furthermore, the larger

the size of the data, the higher the opportunity

value and the more effective the data-mining

tool should be in order to extract useful

information. Data mining has a wide range of

applications in today's world, including data

analysis in the health sector, computational

biology, cyber-crime detection, web mining,

sentiment analysis, decision making, weather

forecasting, and so on (Rodriguez et al., 2016).

Figure1: The process of data mining

Data mining is not a stand-alone procedure;

rather, it is an integral part of the “Knowledge

Discovery from Data” (KDD) process (Han &

Kamber, 2006). The KDD process consists of

data collection, data integration, data

transformation, and visualization. Figure 1.2

depicts the process of KDD. Data mining

systems are designed and equipped with a

wide range of approaches that meet the needs

of users to a considerable extent.

1.1 Utility Itemset Mining

Some basic definitions are as follows:

“Utility of an Item”

The utility of an item or itemset is defined as

the product of internal utility and external

utility.

For example, the utility of item {M} in T1 is 6.

In T1, the utility for an itemset {M, N} is

equal to the total of the utilities of these items,

which is 14.

“Utility of an Item in the Dataset”

The utility of an itemset in the database is

defined as the sum of all the utilities of that

itemset from all the transactions having the

said itemset.

For example, the utility for an itemset {M, N}

is the sum of utilities of {M, N} from

transactions T1 and T3, which equals 14+36 =

50.

1.2 Utility Itemset Mining for Big Data

“Lots of information and a lot of noise. To

hear the signal between the noises is the key.”

There has been a dramatic shift in intelligent



ISSN: 2366-1313

848

data processing with the expanded capacity of

modern applications to produce and store

huge quantities of data. Almost everything we

are doing today leaves a digital trace, which

can be analyzed and used by data scientists.

Activities like playing an online game or

browsing a shopping website generate and

collect the data. Our smart phones collect data

every second on what and how we use it. Big

data is an immense amount of data with a high

velocity and variety. Big data mining has a

wide spectrum of uses in various sectors like

health care, computational biology, detection

of cyber-crime, web mining, analysis of

sentiments, decision making, weather

forecasting, etc. Over 100 million genomes

are expected to be sequenced as part of

genomic studies by 2025. Efforts from both

big pharma and national population genomics

programs are already yielding massive

amounts of data, which are only expected to

grow in the future. This data, if properly

analyzed and interpreted, has the potential to

bring precision medicine into a new golden

era, as represented in figure 2. Several

government agencies have already initiated

their projects to mine the hidden facts in this

era of big data, seeing the huge potential that

can be used as the major decision factors for

various policies in the fields of health,

education, sports, etc. (Wu et al., 2013), (Tsai

et al., 2015), (Lin et al., 2015). Furthermore,

the larger the data set, the greater the

opportunity potential and the more effective

the data-mining tool in extracting meaningful

information.

Figure 2 : Genomics with big data leads

towards precision public health

1.3 Characteristics of Big Data

Why these large data sets are called “Big

Data”? The answer can be given from the

definition of distinctive Vs, which was

introduced by Gartner analyst Doug Laney in

2001 (Laney, 2001). These characteristics are

discussed here in brief.

Volume

Volume refers to the enormous amounts of

data generated every second from various

sources. Sensors acquire gigabytes of data

every day as a result of device downsizing and

the Internet of Things (IoT). Every hour, over

30,000 hours of video are uploaded to

YouTube and 6,500 tweets are tweeted every

minute. The amount of data available is

increasing at an alarming rate.

Variety

Variety refers to a large number of data

sources and forms, both structured and

unstructured. Data is generated from

heterogeneous sources and in various forms. It



ISSN: 2366-1313

849

could take the form of tweets, emails, forms,

images, videos, audio files, transactions, and

so on. There is no defined data structure. It

might be structured as tables, semi- structured

as XML, or unstructured as images.

Velocity

The pace at which the massive amounts of

data are generated, acquired, and processed to

meet the demands determines the true power

of the data. Compared to the other factors,

velocity is critical; it's pointless to pay big

bucks and have to stand in line for data. Thus,

one of the most essential characteristics of big

data is the capacity to supply data on demand

at a faster pace.

2. LITERATURE REVIEW

Several pattern-mining techniques have been

suggested in the literature. Itemsets,

sequences, and graphs are some of the

patterns (Agrawal & Srikant, 1995), (Elseidy

et al., 2014), which have been the focus of

interest. This chapter reviews studies on the

most famous category, high utility itemsets

(Yao et al., 2006). Mining High Utility

Itemsets (HUIs) can be considered as a

refinement of the problem of frequent itemset

mining where the database is composed of

items having a factor associated with them,

indicating their significance. This general

formulation of the problem allows for the

modeling of a broad spectrum of applications,

such as identifying all itemsets in a

transaction database that generate a high profit,

discovering sets of web pages on which

people spend a significant period of time, or

locating all sequential patterns, as in classical

frequent pattern mining. This chapter presents

an in-depth review of the topic of High Utility

Itemset Mining (HUIM) and serves as an

overview as well as a guideline to recent

achievements and research prospects. Section

2.2 and section 2.3 discuss the core concepts

of association rule mining, itemset mining,

frequent itemset mining and high utility

itemset mining. A review of various high

utility itemset mining techniques for big data

is presented in section 2.4. Various loopholes

and research opportunities in the sphere of

HUI mining are also discussed in this section.

The chapter concludes with the identification

of research gaps.

(Agrawal et al., 1993) introduced the thought

of itemsets and association rule mining. The

method of finding itemsets in a database is

known as “itemset mining”. It could be a

group of often-occurring items, a rare set of

items, items having negative correlations, or

items with a specific interest aspect. The

Apriori technique has been proposed as a

method for extracting frequently occurring

itemsets from a transactional database. Many

data structures and techniques (Agrawal &

Srikant, 1994), (Zaki, 2000), (Per et al., 2001)

have since been proposed to mine frequent

and high-utility itemsets from a transaction

database. These data structures are intended to

cut down on overall execution time, candidate

itemsets investigated throughout the search



ISSN: 2366-1313

850

process, and memory requirements.

3. PROPOSEDTECHNIQUE(S) OF HIGH

UTILITY ITEMSET MINING FOR BIG

DATA

3.1 Proposed Technique - Absolute High

Utility Itemset Miner (AHUIM)

This section introduces the proposed

technique, Absolute High Utility Itemset

Miner, or AHUIM, which extends the state-

of-the-art “Efficient high-utility Itemset

Mining” (EFIM) method. The proposed

approach works in a distributed context by

modeling EFIM in a parallel framework.

Enormous datasets or big data can be

processed quickly and efficiently by

employing the "divide and conquer" practice.

AHUIM makes use of the Apache Spark

framework, with RDD as the data storage

format. The data is partitioned across multiple

nodes, each of which handles the task in its

own way. The technique is discussed and

assessed in the following sub-sections.

3.1.1 Phases of AHUIM

The phases of the technique AHUIM are

discussed as follows:

The transactional data is distributed evenly in

the form of data blocks among the working

nodes of the cluster. Different working nodes

carry out the task simultaneously. This is

accomplished using the flatmap and reduce by

key functions. A value is flat mapped to zero

or more key-value pairs using the flatmap

function.

An itemset F is taken as the current itemset,

which is initially empty. For each item, a local

utility list is created based on the quantity and

profit factor. By creating pairs of <item,

utility>, each node processes the data that has

been allotted to it. The initial local utilities or

TWU values of 1-itemsets are used to

compute the following items of F (the items

that should be considered in extension of F)

by comparing them with the minimum utility

threshold. These items of F are then arranged

with their sorted TWU values. And the items

that are not a part of the following items of F

(i.e. the unpromising items based on the TWU

values) are discarded here only as they cannot

be a part of any larger HUI set. The dataset is

then reviewed by arranging all the remaining

items of a transaction in order of their rising

values of TWU. Any transaction with no

outstanding items is also eliminated here. As a

result, the entire dataset is a revised version of

the original, with transactions containing

items with increasing TWU values.

The RDD functionality provided by the Spark

system is used to read this updated dataset

from the main memory. The algorithm then

calculates the sub tree utility and succeeding

items for all the items in F. The sub tree utility

is used to prune the unnecessary nodes, which

saves the visiting time of these nodes. The sub

tree utility is calculated at the first level of the

tree using the 1-HTWUIS to find the

succeeding items. The search space is made

up of these items and their respective sub trees,



ISSN: 2366-1313

851

which are evenly distributed throughout the

nodes.

Based on the search space, transaction data for

each node is also obtained. Each node then

generates HUI from the allocated search space

using the Search procedure.

3.2 Overall Flow of AHUIM

The proposed method AHUIM works in a

distributed framework. It takes the

transactional dataset and the minimum utility

threshold as input. The dataset is partitioned

equally among the working nodes of the

cluster. The nodes compute the local utility of

the items, which is initially equal to the TWU

values of the items, using the flatMap and

reduce By Key functions. Any item with a

TWU value less than the threshold is dropped

here. If there is any empty transaction after the

deletion of items, it is also clipped from the

database.

Transactions are now sorted, and items are

arranged accordingly. The database is now a

modified version of the original dataset.

Further, sub tree utility is calculated from the

modified dataset using the TWUs of 1-

HTWUIs.

Figure3: Flow graph of AHUIM

The sub tree utility is used to prune the

unnecessary nodes, which saves the visiting

time of these nodes. The algorithm then

calculates the succeeding items for all the

items to be explored. The search space is

made up of these items and their respective

sub trees.

4. PERFORMANCE COMPARISON OF

PROPOSED TECHNIQUE(S) WITH

EXISTING HIGH UTILITY ITEMSET

MINING TECHNIQUES

Utility Itemset (HUI) mining is a fascinating



ISSN: 2366-1313

852

topic in data analytics. It seeks itemsets with

the lowest or highest utility offered by the

user with respect to the purpose. In utility

mining, each object is connected to a factor

that reflects its importance, such as price,

number, size, interestingness, profit, or any

other piece of information depending on the

desire of the user. The task is to identify the

itemsets with the specified (low or high)

utility value. High utility itemset mining is a

key activity in the realm of big data, with

several applications in a wide range of

industries.

There have been very few high utility itemset-

mining techniques (HUIM) developed for

huge datasets. Among these are DTWU-

Mining, EFIM-Par, PHUI-Miner, BigHUSP,

and P-FHM+. In this research work, two

techniques for enhancing mining efficiency

are proposed: Absolute High Utility Itemset

Miner (AHUIM) and Enhanced Absolute

High Utility Itemset Miner (EAHUIM) for

mining high utilityitemsets from big data. In

this chapter, the performance of the proposed

techniques AHUIM and EAHUIM is

evaluated against that of other standard

techniques.

4.1 Performance Comparison of AHUIM

with Existing Approaches

The technique AHUIM is compared with

other state-of-the-art HUIM techniques in this

section. It is first compared with a non-

distributed approach using small datasets to

analyze the difference between the distributed

and non-distributed frameworks. AHUIM is

then compared with distributed approaches on

large datasets.

4.1.1 AHUIM vs. Non-Distributed

Algorithm

The proposed AHUIM technique is compared

with the Two-Phase algorithm (Liu et al.,

2005), which is the most widely used

algorithm for non-distributed systems. Two-

Phase is a complete algorithm, which uses a

candidate generation approach to mine the

HUIs. The 1-itemset is used to generate a

candidate 2-itemset, which is then used to

obtain a candidate 3-itemset, and so on until

the longest-itemset is discovered. The

candidate-itemsets are then assessed to find

the high utility itemsets. The comparison of

AHUIM with Two-Phase is done on the

parameters of execution time, scalability,

accuracy, and stability. The experiments are

performed on real datasets.

4.2 Experimental Setup

Two-Phase is a non-distributed algorithm

widely used for small datasets. It is used to

evaluate the performance of AHUIM. Both

the algorithms have been written in Python

using the Spyder4 IDE. A Spark cluster with

one master node and six working nodes is

built for the distributed system using Apache

Spark 3.0. The system used for execution has

32 GB of RAM and two Intel® Xeon® CPU

E5-2620 processors with six cores each

running at 2.00 GHz. The operating system is

Windows 10.



ISSN: 2366-1313

853



Volume VII Issue I June 2022 www.zkginternational.com 854

Datasets

The experiments are carried

out on three real-world

datasets: Chess, Connect, and

Mushroom. The datasets are

available on the UCI

repository. SPMF, a data-

mining library, keeps these

datasets in a format that is

suitable for data mining

techniques. Chess is a dataset

with 3196 transactions and 75

unique items representing

different game movements.

Connect is also a dataset for a

game with 67557 transactions

and 129 different items.

Mushroom is a sparse dataset

with 8416 transactions and

119 unique items for various

mushroom types. The

attributes of the dataset are

listed in table 1. The

#Transactions, #Items, and

#AverageItems are the total

number of transactions in the

dataset, the number of unique

items, and the average number

of items per transaction,

respectively. The UCI

repository contains detailed

information about these

datasets.

Table1: Various datasets for experiments

(Source: SPMFLibrary)

Performance Evaluation

In this section, the technique AHUIM is

assessed on small datasets for various

parameters. For every threshold value,

experiments are conducted five times, and

the average values are considered.

Comparison of Execution Time

The techniques AHUIM and Two-Phase

are compared on three datasets: Chess,

Connect, and Mushroom for the running

time. Since the technique AHUIM works

in distributed mode with more than one

working node and Two-Phase is a non-

distributed technique, AHUIM performs

much better than Two-Phase.

Table2: Execution Time (seconds) of

AHUIM and Two-Phase for different

thresholds

Dataset
AHUIM Two-Phase

2 % 3 % 4 % 2 % 3 % 4 %

Chess 1.844 1.78 1.32 15.68 13.57 11.54

Connect 6.65 5.44 5.2 45.64 43.68 41.46

Mushroom 4.238 4.62 3.98 38.86 34.36 29.46

Dataset #Transactions #Items #AverageItems

Chess 3196 75 37

Connect 67557 129 43

Mushroom 8416 119 23



Volume VII Issue I June 2022 www.zkginternational.com 855

The execution times of the techniques

AHUIM and Two-Phase can be seen in

table 2. Figure 4 (a) represents the

execution time results for Chess dataset;

figure 4.(b) Represents the execution time

results for Connect, and figure 4(c)

represents the result of execution time for

the Mushroom dataset.

Figure 4(a): Execution time of AHUIM

and Two-Phase for Chess

Figure 4(b): Execution time of AHUIM

and Two-Phase for Connect

Table 3: Execution time for various sizes

of Chess datasets

Figure4(c): Execution time of AHUIM and

Two-Phase for Mushroom

4.3 Comparison of Scalability

The property of an algorithm to preserve

performance as the workload grows is

referred to as “scalability.” To investigate

the scalability of the techniques, the data

size is increased and the performance of

the techniques is noted. It can be seen from

table3 (considering the Chess dataset) that

AHUIM performs well with the increased

data size and the execution time surges

approximately linearly (Threshold = 2%).

4.4 AHUIM vs. Distributed Algorithms

In this section, AHUIM is compared with

standard distributed techniques like PHUI-

Miner (Chen, 2015) and EFIM-Par

(Tamrakar, 2017). PHUI-Miner was

introduced in 2016 for Big Data. It is a

distributed approach with improved

methods for load balancing. Sampling and

compression techniques are used to

minimize the search space. Although

PHUI-Miner and other variants mine data

Dataset
Technique

AHUIM Two-Phase

Chess 1.844 15.68

Chess10x 13.423 197.86

Chess20x 24.54 486.92

Chess30x 52.546 893.53



Volume VII Issue I June 2022 www.zkginternational.com 856

from big datasets, they only provide

approximate results due to a trade-off

between accuracy and efficiency. EFIM-

Par was proposed in 2017 for mining big

data with effective pruning strategies of

“sub tree utilities” and “local utilities”.

During the literature survey, it is found

that both of these techniques are better

than other benchmark algorithms. AHUIM

is competed for execution time, scalability,

memory usage, stability and accuracy.

5. Traffic Jams Detection and

Congestion Avoidance in Smart City

Using Parallel K-Means Clustering

Algorithm

5.1 Parallel K-Means Clustering

Algorithm

In this section, we present how to adapt K-

means in the parallel environment for big

data. Here, K-Means algorithm is used for

traffic control applications in smart city.

The k-means algorithm takes the input data

set D and parameter K, and then divides a

data set D of n objects into k groups. This

partition depends upon the similarity

measure so that the resulting intra cluster

similarity is high but the inter cluster

similarity is low. Cluster similarity is

measured regarding the mean value of the

objects in a cluster, which can be showed

as the clusters mean. The k- means

procedure works as follows. First, it

randomly chooses k objects, each of which

initially defined as a cluster mean or center.

For each of the remaining objects, an

object is moved to the cluster to which it is

the most similar, based on the similarity

measure which is the distance between the

item and the cluster average. It then

calculates the new mean for each cluster.

This process repeats until no change in the

mean values in the clusters.

To get the advantages of the high

performance of in-memory computing in

the traffic field in smart city we have

proposed K-means model whose work

flow is represented in Figure 5. According

to the pervious diagram, the data is spitted

into m segment and sent to the in-memory

computing cluster. At the same time the k

number of clusters and their centers initial

values delivered to the in-memory

computing cluster. After that, each point in

the data set is classified as one of the

output clusters states. This output will be

sorted and shuffled. The system will check

whether the number of iterations is reached

or the convergence condition is satisfied if

yes then output is obtained otherwise it

will go for next iteration.



Volume VII Issue I June 2022 www.zkginternational.com 857

FIGURE5: Proposed Traffic

Management Model.

5.2 Experimental Results and

Discussions

This analysis is based on the real traffic

data for the Aarhus city in the CityPulse

project [107]. A collection of datasets of

vehicle traffic, observed between two

points for a set duration of time over a

period of 6 months (449 observation points

in total).In this study K-Means clustering

algorithm (k = 3) have been applied to all

location in order to build a real model of

the traffic condition all over the day in

order to help the people in this city to get

use of the smart traffic issue. In this study

there are three classes red indicates heavy

traffic area, green indicates traffic free area

and yellow indicates the area with

moderate traffic but a high chance of

getting jammed. The clusters are

monitored continuously and the results are

updated for every 5 min and the summary

data is collected for every 2 h. The use of

these results aims to make the

transportation system inside the Arhus city

smarter in order to help people to save

time and effort for searching about

alternative ways in the time of traffic jam

happen as the model presents a full view of

the traffic condition for the hall city every

five minutes. A sample of results obtained

from the model for certain location on the

Aarhus city from 11:30 am to 7:30 pm is

as it is shown in Figure 6 the traffic

conditions from 11:30 am to 1:30 pm was

moderate only one small traffic jam

happened. From 1:30 pm to 3:30 pm was

so heavy a lot of traffic jams was recorded

which means that the people have to

choose another route in this duration of

day. After that, from 3:30 pm to 5:30 pm

the traffic condition in this location

becomes good. Finally, from 5:30 pm to

7:30 pm the road is free and traffic

condition was excellent in this location.

By this way the proposed model give the

traffic management good option to do

good control of the traffic conditions in the

city. They could give the people in the city

a complete picture of the traffic conditions

inside the city. Using this model, help

people to choose optimal route of their

journey at any time. Traffic condition in

different locations in the Aaruthu city from

1:30 pm to 3:30 pm is given in Figure 6.3.

The duration from 1:30 pm to 3:30 pm is

one of traffic jams times in the most of

cities. By using the proposed model

alternative routes will be available to the

people to choose best route at this time. As



Volume VII Issue I June 2022 www.zkginternational.com 858

it is shown in Figure 6.3, traffic condition

from different six locations inside the

Aaruthu city from 1:30 pm to 3:30 pm is

presented. It is clear that the location (a) is

the heaviest road. It contains the maximum

number of vehicles at this duration so it is

suggested to the people to avoid this road

at this time. Locations b and c have a lot of

traffic jam at this time of day.

CONCLUSION

The main focus of this thesis is on

developing method(s) for extracting

patterns of itemsets from large datasets.

Apache Spark, which is regarded as the

most capable platform for parallel

processing, is used for analysis. A spark

cluster is being employed with master and

slave nodes. A novel technique, Absolute

High Utility Itemset Miner (AHUIM), is

proposed by amending the structure of the

traditional EFIM technique. The technique

works on a distributed framework to

process the huge datasets, as stand-alone

systems are not capable of processing

these datasets. The AHUIM technique

works by distributing the data to various

nodes, and these nodes then mine the

itemsets simultaneously. The Map-Reduce

framework is used for this purpose. To

reduce the search space, two novel space

pruning strategies are proposed, called

absolute local utility and absolute sub tree

utility. The performance of the technique

is compared to other state-of-the-art

techniques such as Two-Phase, EFIM- Par,

and PHUI-Miner. AHUIM outperforms

these techniques in terms of execution time,

memory requirements, and scalability. The

accuracy of the technique is compared to

ground truth data, and it is found that

AHUIM efficiently finds the itemsets with

good accuracy.



Volume VII Issue I June 2022 www.zkginternational.com 859

REFERENCES

1) Caesar Wu, Rajkumar Buyya,
and Kotagiri
Ramamohanarao. Big data
analytics= ma- chine
learning+ cloud computing.
arXiv preprint
arXiv:1601.03115, 2016.

2) Rajkumar Buyya, Rodrigo N
Calheiros, and Amir Vahid
Dastjerdi. Big Data:
Principles and Paradigms.
Morgan Kaufmann, 2016.

3) Hsinchun Chen, Roger HL
Chiang, and Veda C Storey.
Business intelligence and
analyt- ics: From big data to
big impact. MIS quarterly,
36(4), 2012.

4) Peter Lake and Robert Drake.
Information systems
management in the big data
era. Springer, 2014.

5) Timothy Paul Smith. How
Big is Big and how Small is
Small: The Sizes of
Everything and why. OUP
Oxford, 2013.

6) Ibrahim Abaker Targio
Hashem, Ibrar Yaqoob, Nor
Badrul Anuar, Salimah
Mokhtar, Abdullah Gani, and
Samee Ullah Khan. The rise
of big data on cloud
computing: Review and open
research issues. Information
Systems, 47:98–115, 2015.

7) Gil Press. A very short
history of big data. Forbes
Tech Magazine, May, 9,
2013.

8) Fremont Rider et al. scholar
and the future of the research

library. 1944.
9) Frank J Ohlhorst. Big data

analytics: turning big data
into big money. John Wiley
& Sons, 2012.

10)Aggarwal, C. C., Bhuiyan, M.
A. & Al Hasan, M. (2014).
Frequent pattern mining.

11) Springer.
https://doi.org/10.1007 /978-
3-319-07821-2

12)Aggarwal, C.C. (2016). An
Introduction to recommender
systems. in Recommender
Systems, (pp. 1-28). Springer,
Cham, Switzerland. https://
doi.org/ 10.1007/ 978-3-319-
29659-3_1

13)Agrawal R., Imielinski T. &
Swami A. (1993). Mining
association rules between
sets of items in large
databases. In International
Conference of Management
of Data (pp. 207-216).
Washington, DC,
http://www.rakesh.agrawal-
family.com/ papers/
sigmod93assoc.pdf

14)Agrawal R. & R. Srikant.
(1994). Fast Algorithm for
Mining Association Rules. In
International conference on
Very Large Data Bases (pp.
487-499), Santiago, Chile.
http:// www.cse.msu.edu/
~cse960/ Papers/
MiningAssoc-AgrawalAS-
VLDB94.pdf

15)Agrawal, R. & Srikant, R.
(1995). Mining sequential
patterns. In Eleventh
International Conference on
Data Engineering, (pp. 3–14).

http://www.rakesh.agrawal-/
http://www.cse.msu.edu/
http://www.cse.msu.edu/


Volume VII Issue I June 2022 www.zkginternational.com 860

https://doi.org/10.1109/ICDE.
1995.380415.

16)Agrawal, R., Gehrke, J.,
Gunopulos, D. & Raghavan,
P. (1998). Automatic
subspace clustering of high
dimensional data for data
mining applications. In ACM
SIGMOD International
Conference on Management
of Data, vol 27 (2), pp. 94–
105.
https://doi.org/10.1145/2763
05.276314

17)Ahmed C, Tanveer C, Jeong
B & Lee Y. (2009). Efficient
tree structures for high utility
pattern mining in
incremental databases. IEEE
Transactions on Knowledge
and Data Engineering 21(12),
1708-1721, https:// doi.org/
10.1109/TKDE.2009.46


	1.1 Utility Itemset Mining

