
ISSN: 2366-1313

Volume VII Issue I June 2022 www.zkginternational.com 805

Multi-Resolution Hierarchical Structure for Efficient Data

Aggregation and Mining of Big Data

Korra Bichya, Research Scholar and Dr. Suribabu Potnuri, Professor

Department of Computer Science and Engineering,

J.S. University, Shikohabad, U.P. India email: korra.bichya@gmail.com

ABSTRACT

For modern applications in a variety of
disciplines, including healthcare, assistive
technology, intelligent transportation,
environment, and climate monitoring, the
use of big data analysis is very necessary.
With regard to the management of
enormous volumes of data, the
conventional methods that are used in the
area of data mining and machine learning
are not effective. It is necessary to have
effective methods for mining and learning
from massive amounts of data, even if
there is a possibility that such methods
would compromise accuracy. A framework
for data aggregation has been developed by
us in order to reduce the amount of data
that is comprised of a large number of
instances and comes from a variety of data
sources. There are many different degrees
of detail that are used to gather and
aggregate data, and the level of detail that
is selected requires a careful balancing act
between being efficient and accurate. After
the initial construction, the building is then
progressively modified over the course of
subsequent years. It performs the role of a
common data input for a variety of learning
and mining algorithms simultaneously. The

algorithms used in data mining are
modified so that they can handle
aggregated data as input. For the purpose
of analyzing and extracting useful
information from enormous datasets,
hierarchical data aggregation is a system
that integrates innovative data
representations and algorithms. For the
purpose of determining how successful it is,
we used a multi-resolution Naive Bayes
Classifier on the structure of the data
aggregation. The outcomes of the
experiments show that the proposed
framework makes it possible for the
classifier to reduce the amount of time it
takes to calculate by an average of 75%
and to limit the amount of memory it uses
while still retaining the accuracy of the
results.

Keywords—Big data reduction, data

aggregation, multiresolution data mining.

mailto:bhaskarrao.g@gmail.com

ISSN: 2366-1313

Volume VII Issue I June 2022 www.zkginternational.com 806

1. Introduction
In a number of applications, including as
healthcare, assistive technology, intelligent
transportation, and monitoring of the
environment and climate change, the study
of large-scale data is an essential
component. During a very short period of
time, many applications need the gathering
of millions of data instances at once.
Conventional data mining approaches, on
the other hand, run into limitations when
trying to manage large-scale data sets
because of limited memory and central
processing unit capabilities.

The extraction of useful information from
data that was previously unknown or
implied is accomplished via a process
known as data mining, which is a
complicated and repeated process. As a
result of the countless repetitions of data
scanning required by various data mining
methodologies. Because of this, the process
of obtaining massive amounts of data on an
individual basis for the goal of mining is
very expensive. As a result, researchers
have been compelled to investigate creative
methods for expediting the study of big
data. These techniques encompass a wide
variety of approaches, such as parallel
algorithms, which are used to make
efficient use of multi-core processors;
compression algorithms, which are used to
minimize the amount of data storage that is
required; dimensionality reduction
algorithms, which are used to reduce the
number of variables in the data; and data
summarization techniques, which are used
to reduce the number of data instances in
big data.
When compared to dealing with raw data
that is excessively redundant, inconsistent,

and noisy, doing data mining on data that
has been summarized, minimized, and is
relevant is more efficient. On the other
hand, there has been a dearth of empirical
research that has been conducted with the
intention of reducing the number of data
instances via the process of summarizing,
and then using the condensed data for the
purposes of data mining. In order to
accomplish the goal of data mining, the use
of condensed data involves a number of
technical challenges.

Condensed data should be used as
universal measurements in order to
accommodate a wide variety of data
mining techniques. This is the first
challenge. The selection of relevant
techniques for summarizing is dependant
upon the particular properties that are
needed by each data mining methodology
for the construction of its model. In order
to accomplish this goal, the condensed data
should provide each data mining technique
with a collection of information that is not
only succinct but also complete.

When it comes to the second challenge, the
duty of organizing the summaries in a
variety of resolutions is involved. The user
is able to choose the resolution that is most
appropriate for their needs and find a
balance between time, memory, and
accuracy depending on the resources that
are available to them and the requirements
of the program. This is made possible by
the availability of a large number of
resolutions.The efficient generation and
maintenance of the condensed data is the
third issue that has to be addressed. Despite
the fact that the creation process should

ISSN: 2366-1313

Volume VII Issue I June 2022 www.zkginternational.com 807

only take place once, it is of the utmost
importance that it be carried out at a rapid
pace and, more importantly, that it be able
to be updated gradually. Presented in this
research is a tree structure that is shared
across many resolutions. The proposed tree
structure has as its primary objective the
provision of scalability and dependability
in the process of summarizing enormous
amounts of data, both in real time and in
the past, in a format that supports several
resolutions. This is done with the intention
of facilitating efficient data mining. A
representative and condensed collection of
enormous data is provided by the structure
for the purpose of usage by mining and
learning algorithms. This enables these
algorithms to execute their model more
effectively and with reduced memory
consumption, which may result in a loss of
accuracy that is minimal.

It has been decided to divide the remaining
amount of the job into five distinct
components. The first section offers
background information and previous
studies. An explanation of the data cube
lattice, which was developed expressly for
the purpose of managing vast amounts of
data, is presented in the next section. In the
third section, the framework that was
recommended is presented, together with
extensive information on its
implementation and a study of its
performance. A description of the tests that
were carried out and the discoveries that
were brought about by those trials can be
found in the fourth section of the text. This
paper concludes with a discussion of
possible subjects that may be the subject of
more investigation.

Background And Previous Works

The number of instances that are included
inside the dataset is a factor that determines
the amount of time that is required to
complete various data mining and machine
learning techniques. In its quadratic
solution, the Support Vector Machine
(SVM) has a time complexity of O(N3),
and when it is used in conjunction with the
sequential minimum optimization (SMO)
technique, it has a best complexity of O(N2)
[5]. Here, N is the number of occurrences.
On the other hand, similarity-based
classifiers, such as KNN, have a time
complexity of O(Ndk), while conventional
decision trees, such as CART, hjjave a time
complexity of O(NlogN). When a
significant number of events are taken into
consideration, these approaches, which
include mining algorithms that may need
several scans of data, become
computationally onerous. Even though it
may result in a possible drop in accuracy,
some mining and learning algorithms need
a preprocessing step in order to reduce the
number of instances N. This is something
that is necessary in order for them to be
able to manage big data sets.

Based on the findings of a recent study, it
has been shown that random sampling is
the only method that data scientists often
use in order to quickly extract insights
from a huge dataset. As a result of the
highly unique and irregularly distributed
attribute values, it is difficult to get a
representative random sample for a big
dataset that is not steady.

A method of instance reduction known as
instance selection includes picking a
smaller set of instances from a larger
collection of raw data in order to reduce the
amount of data that is collected. The subset
processes severely diminish the quality of
data and contain a computational cost of at

ISSN: 2366-1313

Volume VII Issue I June 2022 www.zkginternational.com 808

least O(NlogN). Because of this, instance
selection is not suitable for use with large-
scale data sets. It is essential to have a clear
understanding that the ideas of sampling
and instance selection are two separate
things. Sampling is the process of picking
data points from the original dataset in a
random fashion, while instance selection is
the process of selecting the instances that
are the most informative by taking into
consideration the associations between
them.

By combining instances that are connected
to one another into a single instance, data
aggregation is a technique that may be used
to reduce the number of instances that are
redundant. In order to support complex
analysis and informed decision-making,
advanced approaches for aggregation
include the use of multidimensional data
cubes. These cubes store aggregated data in
subspaces, which allows for efficient data
storage. Within the realm of business
intelligence, it is used to a significant
degree. OLAM, which stands for "online
analytical mining," is a technique that
enhances the effectiveness and scalability
of data mining by combining mining
models with a multidimensional data cube
and an online analytical processing (OLAP)
engine. The size of a multidimensional data
cube grows exponentially as the number of
dimensions on the cube increases, which is
the primary reason for its enormous size.
There have been a number of different
approaches proposed as potential solutions
to the problem. As an example, the iceberg
cube does not take into consideration data
cells that have a lower number of data
instances than a threshold that the user
specifies. There are a significant number of
cells in the data cube that are poorly
occupied, which indicates that there are
places in the multidimensional data space

that are unavailable. It may be possible to
get rid of these cells in order to improve
the effectiveness of the educational and
mining operations.

or the purpose of facilitating quick cross-
referencing, it is necessary to link data cells
that have been integrated at different levels
of detail. Among the many potential
solutions to the problem, one of the most
famous strategies is to adopt a certain
index structure. In order to alleviate the
inefficiencies that were experienced by the
multidimensional data cube, a tree-based
index structure was implemented. In order
to accomplish this goal, several versions of
the KD-tree, the aR-tree, and the R+-tree
have been used. When it comes to working
with data that has a high dimensionality,
however, K-DTree-based approaches are
notorious for their complicated creation
process and their slow execution. In
addition to this, it does not have the
capability to do incremental updates. The
aR-tree method is responsible for handling
areas that overlap, which results in an
unnecessary load of processing for our
particular scenario, in which we only deal
with regions that do not overlap (as
mentioned in Section III). On the other
hand, the R+-tree method is not able to
deal with data that has been aggregated.
In addition, the CF tree that is employed in
the BIRCH methodology and the R* tree
that is utilized in the DBSCAN method are
also examples of different categories of
index structures. On the other hand, these
methods are tailored to the particular sorts
of geographical data, and their use is
contingent upon the query. Once the tree
has been deployed for a particular query
(data mining operation), it is not possible to
reuse it for any other future searches. As a
consequence of this, several indexing

ISSN: 2366-1313

Volume VII Issue I June 2022 www.zkginternational.com 809

strategies require using multiple scans of
the raw data.

DATA CUBE

For the purpose of this investigation, a
dataset with dimensions N x d is
investigated. Here, N stands for the number
of occurrences, and d is the number of
variables. The presumption is that N is
much more than 2d. This set of variables
has values that are both continuous and
numerical in nature.
One kind of data that is often seen is
continuous data, which includes the
information that is generated by sensors
such as temperature, air pressure,
gyroscope, accelerometer, GPS, gas
sensors, and water sensors. Due to the lack
of a concept hierarchy in continuous data,
the process of aggregating continuous data
into a multi-resolution hierarchical
structure is a difficult one to do.

The use of a hierarchical multilevel grid
summarizing approach is what we propose

as a means of reducing the total number of
data instances. In the disciplines of
geographic data mining and robotic
mapping, an approach that is analogous to
this one has been used recently. This
strategy entails dividing each dimension in
the dataset into a limited number of bins
that are all the same width and do not
overlap with one another. A summary of
the information that pertains to the raw
data instances that are included inside each
area is included in each single area. In
order to effectively distinguish between the
various areas, we provided a number
designation to each one. Numerous smaller
regions are joined to produce a bigger
region at a higher level, which is made
possible by the multilevel structure, which
enables the aggregation of data at a variety
of different levels of detail. It is our
hypothesis that the size of each level as a
whole is equal to half of the size of the
level immediately below it. For continuous
data, this technique provides a hierarchical
structure to take use of.

The hierarchical multilevel grid on

multiple dimensions can be assumed as a

multidimensional data cube. Fig. 1 shows

an example of a multidimensional data

ISSN: 2366-1313

Volume VII Issue I June 2022 www.zkginternational.com 810

cube lattice generated from three

dimensions, each has four levels of

aggregation.

Fig. 1. The lattice of multidimensional

data cube that generated from three

dimensions.

Every single node in the lattice is a
rectangular solid that represents a different
combination of aggregation levels (one
level from each dimension). The cuboid
structure starts with a base cuboid (L4, L4,
L4), which is made up of the lowest levels
(levels 4), each of which has dimensions of
1, 2, and 3 accordingly. It then moves on to
the top cuboid, also known as the apex

cuboid (L1, L1, L1), which is produced by
the highest levels (levels 1), which have
dimensions of 1, 2, and 3, respectively. In
light of this, the data cube lattice allows for
the consolidation of data by taking into
account all of the various combinations of
dimension levels that exist between the two
cuboids.

Each and every cuboid is made up of
several cells. Through the use of a multi-
value index, which is comprised of a
collection of region numbers (one from
each dimension), the cells of the data cube
are recognized and retrieved successfully.
An example of a basic cuboid of the cube
lattice is shown in Figure 2. Assuming that
there are eight areas in each of the three
dimensions, we will suppose that there are
four levels. In addition, it depicts a cell that
is referred to as <1, 7, 8>. This cell is made
up of regions 1, 7, and 8 that are located in

dimensions 1, 2, and 3, respectively.

Fig. 2. The base cuboid (L4, L4, L4)

2. Proposed Multi-Resolution

Tree Structure

The usage of essential tree operations, such
as the search operation, is made possible by
the storage of aggregated data in a tree
structure. Compared to looking through the
massive dataset that has not been processed,
searching using the hierarchical tree

structure produces results that are both

ISSN: 2366-1313

Volume VII Issue I June 2022 www.zkginternational.com 811

more efficient and speedier. An example of
a strategy that enables the calculation of
features at higher levels in a tree structure
based on the characteristics at lower levels
is the Apriori approach. This technique
eliminates the need to rescan the raw data,
which is a common practice in the
information technology field. There is also
the possibility of using the tree structure
for parallel and distributed aggregating
methods.

Several different levels of information have
been merged into the data that is stored in
the tree that has been proposed. The leaves
of the tree contain the data cubes with the
lowest degree of aggregation (L4, L4, L4),
and as we get closer to the base of the tree,
the amount of aggregation grows. An
expert in the field is responsible for
determining the number of tree levels,
denoted by the letter h.

All dimensions are concurrently subjected
to aggregation when using the tree that has
been proposed. In the prior example, which
was presented in Section III, the tree has
the potential to combine data only for the
cuboids that are labeled (L1, L1, L1), (L2,
L2, L2), (L3, L3, L3), and (L4, L4, L4).
This is to understand the situation.
Consequently, the data at each level of the
tree is condensed to half of its size in two

dimensions and then transmitted on to the
next level (given that it is predicted that
each dimension would be reduced to half
of its size at the next level). It should be
brought to your attention that the apex
cuboid (L1, L1, L1) is not produced since it
does not provide any mining benefits to
merge all of the datasets into a single node.
A tree structure that consolidates data into
two layers is seen in Figure 3, which is
represented by the symbol h equivalent to 2.
It is important to note that the first level

corresponds to the cuboid with dimensions
(L3, L3, L3), whereas the second level
represents the base cuboid with dimensions
(L4, L4, L4).

Every node in the tree, with the exception
of the root, represents a cell in the
congruent cuboid that does not include any
empty space. The statistical metrics that
aggregate the data instances contained
inside an intermediate node are often
included within the node. When new data
instances are introduced to the data
collection and mapped to their appropriate
parent and children nodes, the
measurements have to be updated
progressively after the addition of the new
data instances.

Fig. 3. Typical multi-resolution tree

ISSN: 2366-1313

Volume VII Issue I June 2022 www.zkginternational.com 812

with two levels of aggregation and root

node. Each tree node corresponds to a

nonempty cell in the cuboid

As can be seen in Figure 4, each and every
element in the map table has a pointer that
identifies the proper node (location). Leaf
nodes may have as little as 0 children or as
many as 2d children, depending on the
situation. There is just one item in the map
table of a leaf node that links to its parent
node. There are no entries for the leaf
node's children in the map table. When it
comes to statistical metrics, the root node is
the sole node that is missing. In light of this,
it does not point to any degree of
consolidation. Specifically, it only includes
the mapping table for the nodes that are at
the very top of the tree. We are operating
under the assumption that the root node can
be easily uploaded into memory. One such
assumption is that the tree, or at least a
piece of it, can be loaded into memory in a
short amount of time.

Fig. 4. Typical intermediate node

content. (a) Incremental statistical

features

(b) Map table.

Multi-indexing and Mapping

One might think of a tree node as being
comparable to a data cube cell. A tree
node is a tuple that constitutes attributes
from dimensions. The index of this object
is comprised of many values, which are
organized in the pattern < a1,l, a2,l, …,
ad,l >, where ap,l is the number of the
area with dimension p at tree level l. Each
node is given a name that is comprised of
the level number of the tree in which it is
situated, in addition to the index of the
node. The objective of the node name is to
facilitate access to and differentiation
amongst nodes that are included inside the
tree.

We made use of a mapping function in
order to link each individual data instance
with its associated nodes in the tree
hierarchy. This allowed us to create the
tree making use of a dataset in a way that
was both resourceful and efficient. The

mapping function generates a large
number of keys, also known as indexes,
for each data instance. Each key
corresponds to a distinct level in the tree.
For example, in the case that has been
shown, where the tree has a root and three

ISSN: 2366-1313

Volume VII Issue I June 2022 www.zkginternational.com 813

levels, and the raw data has d dimensions,
the mapping function generates three keys,
as can be seen in Figure 5.

Fig. 5. Map function.

It is very necessary to construct the map
functions with a complexity of O(d) in
order to ensure that the mapping method is
not only quick but also effective. For this
particular criterion to be satisfied, the map
function ought to be constructed in a
fashion that is not reliant on any
information that calls for further
calculation. When determining the index of
a dimension based on Z-score, for example,
it may be required to employ a map
function that depends on the mean of the
values. This is because the Z-score is used
to determine the index. When dealing with
a huge streaming dataset, calculating the
average may be a difficult and troublesome
task. It is our recommendation that the map
function be designed using the information
that is already there for the data collection.
As an illustration, in the field of Human
Activity Recognition (HAR), we are aware
that some sensors, like the gyroscope, are
capable of producing continuous actual
data that falls between the range of -20 to
20 for example. Due to the fact that this
method does not call for any extra
processing resources, it is appropriate to
construct the map function by taking into
consideration the maximum and minimum
distances. In order to generate a tree with
several resolutions, we need the lowest
value of p for dimension p, the number of
tree levels h, and a matrix W. For each
entry wp, l ϵ W in the matrix W, the width
of dimension p at level l is represented
respectively. Both the values of h and W
are able to be determined by an expert in

the subject who is experienced and
informed. The data instance < v1, v2,...,
vd > may be mapped using Equation (1) as
the map function, as seen in the preceding
example. This can be accomplished by
using the map function.

A. Sufficient Statistical Measures

One cannot simply calculate the average of
these elements in order to combine several
data instances into a single node in the
multiresolution tree structure. This needs
additional calculations. As part of the
process of developing the multiresolution
tree structure, we need to calculate
statistical measures that are not only
informative but also succinct, that are
widely used, and that can be continually
updated from the initial dataset. There are
three metrics that are maintained by the
BIRCH data clustering approach. These
metrics are the total, the sum of squares,
and the number of instances for each data
cluster. We utilize the same metrics
because of their incremental nature and the
fact that we are able to update them
directly for each node. This is because we
are building upon the concepts that BIRCH
has established. Consequently, this makes
it possible to update the multi-resolution
structure in a flexible manner, either from
the top-down or bottom-up perspective.
Additionally, we have supplied
measurements for both the lowest and
maximum values, which serve to illustrate
the boundaries of the dimensional range
that is connected with this node. The
essential summary statistics that were
generated for each node of the proposed
framework are shown at the beginning of
Table I. The total, the sum of squares, the
lowest, and the maximum values are all
computed for each dimension. This is

ISSN: 2366-1313

Volume VII Issue I June 2022 www.zkginternational.com 814

something that should be taken into
consideration. There is a possibility that the
level number (l), region number (i), and
dimension (p) will be provided by the node
name.

TABLE I. Summarization Feature

Measures

A wide variety of essential statistical
features that are often used in data mining
are included in the measurements that are
reported in Table I's table. In order to
calculate basic statistical measures like the
mean µ, variance σ2, and standard
deviation σ in a step-by-step manner, these
tools may be used. The correlation and
distribution of variables are two examples
of the many additional statistical
computations that need these measures as
an important component. These essential
statistical values are shown in Table II.
These values may be calculated from the
measurements that are presented in Table I.

TABLE II. Basic Statistical Measures

It is possible to calculate cluster means,
sizes, and distances in a variety of modes
using these metrics if they are adequate.

The Euclidean, Manhattan, L1, and L2
distances that are determined between
cluster centers are some examples.
Additionally, the average distances
between clusters are also included in this
category. For the purposes of clustering
algorithms and learning based on similarity,
this information is quite useful.

By include class labels in the aggregated
data, we would be able to calculate the
probabilities associated with each class.
The construction of classifiers, such as
Bayesian classifiers and Hidden Markov
Models (HMM), requires the use of class
probabilities as an essential component.
Additionally, they are used in the
computation of entropy, gain ratio, and
Gini index for the purpose of creating
decision trees devoid of the need of
accessing individual data items.

There are only a certain number of values
or labels that may be assigned to the
dimension of class labels, which is a
discrete feature. There is the possibility of
dividing the dimension into several regions,
with each region reflecting a different class
label. The class property does not go
through any kind of aggregation and

continues to be constant throughout the
whole of the multi-resolution structure that
is being suggested. As a result, each node

ISSN: 2366-1313

Volume VII Issue I June 2022 www.zkginternational.com 815

is free of any pollution and has a
condensed representation of data that is
only relevant to a particular class. One scan
of each level in the tree is all that is
required in order to compute Equation (2),
which is a representation of the class
probability P(C) for a certain class label C.
This may be accomplished by utilizing the
tree structure that has been provided. In
order to do this scan, the count measure n

and the class attribute value C are used for
each node that is located at, respectively.

Let's say that the set of nodes that are
inside a certain level of the tree is denoted
by the letter q. The total number of
instances that are combined in node i is
denoted by the parameter ni, whereas the
number of examples that are combined in
node i and contain the class label C is
represented by the parameter ni,C.

B. Implementation and Performance

Analysis

C. The implementation of the proposed
framework is carried out in a
hierarchical fashion, beginning with
the primary node and working its way
down to the subordinate nodes. In
order to conduct an analysis of the
worst-case scenario for updating the
structure whenever a new data
instance is received, we assume the
assumption that the data is spread
uniformly throughout all regions and
that there is no region that is devoid of
data. Therefore, in the multi-resolution
structure, each node at level h - 1 has a
maximum of 2d offspring, which are
the leaf nodes at level h. This applies

to all of the nodes in the structure. We
are able to calculate the total number
of leaf nodes (Nh) by entering the
height of the structure (h), the width
matrix (W) of the region, as well as
the highest and lowest values for each
dimension (d).

Where wp,h ϵ W, is the regions width for

dimension p at tree level h. The values

���� ��� ���� are the maximum and

minimum values of dimension p

respectively.

In case class labels C is included in
the structure, the number of nodes at level
h is:

The |C| is the cardinality of class
labels dimension C. The cardinality equal
to the number of distinct values of class
labels.

Each level is aggregated to 2-d of the
size of its immediate lower level. Thus,
the number of nodes in any intermediate
level l depends on leaf level is:

Then, the maximum total number of
nodes in the multiresolution structure
with one root node and h levels is:

The space that is necessary to store the
proposed multi-resolution tree structure is
actually less than the space that is required
to store the raw data. This is the case
despite the fact that the size of a tree node
is more than the size of an instance of raw
data. This is owing to the fact that the

ISSN: 2366-1313

Volume VII Issue I June 2022 www.zkginternational.com 816

number of occurrences in the raw data,
which is represented by the letter N, is very
high and continues to increase from time to
time as a result of streaming data. On the
other hand, the size of the tree structure
that has been suggested, which is
symbolized by the symbol NTree, is
substantially lower than N.

The multi-resolution tree structure is
constructed using Algorithm 1 by doing a
single examination of the data that is being
received. The map function is used in order
to generate h index keys throughout the
process of getting ready for an upcoming
data instance. From what can be seen in
Figure 5, each key corresponds to a
different level in the tree. After that, the
computer does an analysis on the root map
table in order to locate an item that serves
as a match for the first key. In the event
that the entry is found, the algorithm will
first update the node by invoking it with
the appropriate pointer and then updating it.

ISSN: 2366-1313

Volume VII Issue I June 2022 www.zkginternational.com 817

uploaded to memory. These nodes are the
root node and a single node from each

level of the tree.

Algorithm 1 is more effective than a data
cube because it eliminates the need to
generate empty nodes. As a consequence,
the tree structure that it generates is more
compact than the one that a data cube
generates. In addition to this, it avoids the

need of searching through all of the nodes.
Instead, it only calls (h + 1) nodes, which
results in a penalty of O(h + 1) disk
operations having to be performed.

Algorithm 1 is shown in Figure 6 by
utilizing the same example that was

ISSN: 2366-1313

Volume VII Issue I June 2022 www.zkginternational.com 818

illustrated in Figure 5. The path that the
algorithm takes from the root node to the
leaf nodes is shown by the dotted curve.
Additionally, the only nodes that are
visited are the red nodes, which includes
the root node. The cost of searching the
map tables of the nodes that have been
visited is represented by the symbol ∑ℎ−1
2(ℎ−�). One node is traversed at each level,
beginning with level 1 and continuing all
the way down to level h minus 1. In spite
of this, we do not do a scan on the leaf
nodes at level h since they do not produce
any progeny. While using the Birch
technique to update the CF tree, using
Algorithm1 to update the recommended
tree is more efficient than using the Birch
approach to update the CF tree since it only
requires a single pass over the tree. The
top-down pass is used to determine which
nodes are appropriate, and the bottom-up
pass is used to update the nodes that have
been determined to be suitable.

.

ISSN: 2366-1313

Volume VII Issue I June 2022 www.zkginternational.com 819

Fig. 6. Updating the multi-resolution

tree

Experimental Evaluation
Within this section, we carry out a
multitude of tests on the framework that we
have proposed in order to improve the
effectiveness of the Naive Bayes classifier.
The Naive Bayes classifier is a data mining
approach that is both efficient and reliable.
It is often used for classification tasks, such
as the categorization of text and the
identification of medical conditions. Naive
Bayes is a technique that is used to
estimate the class label Ϸ Eq. (7) for an
instance x that has not yet been categorized.
The Bayes theorem is used to compute the
class probability P(C), and then the class
label Ck is assigned to the class with the
greatest posterior probability. This is how
it accomplishes the intended purpose.
Every instance in the training dataset is
assigned to one of k distinct classes, while
the dataset itself is composed of N
examples that are located in a space with d
dimensions.

If you want to determine the probability of
continuous variables, you may do so by
using the summary characteristics that are
provided in Table II and then replacing
them in the equation that came before it. In
the next step, we use the Multi-resolution
Naive Bayes (MRNB) technique on the
tree topologies and compare it to the
traditional Naïve Bayes method (NB) that
is applied to datasets that have not been
treated. The results, which are shown in
Table III, illustrate that our MRNB
technique consistently beats NB by a
significant margin across all datasets. A
time saving of around 25 percent is shown
by MRNB in comparison to regular NB. In
addition to this, it has the capability of
operating at a higher level (level 1) of the
tree, which results in a lower memory need.
The number of instances in the raw dataset,
which is marked by the letter N, is much
more than the number of nodes that are
present in this level, which is denoted by
the letter N1. Additionally, it retains a
degree of prediction accuracy that is
comparable to that of normalization.

ISSN: 2366-1313

Volume VII Issue I June 2022 www.zkginternational.com 820

As seen in Equation (8), the Naive Bayes
method makes the assumption that
variables are independent of one another
and use the normal distribution probability
in order to calculate the class probability of
variables that are normally distributed.

In order to do an analysis on raw data, the
Naive Bayes classifier examines each and
every occurrence of the data in order to
compute the conditional mean, variance,
and standard deviation. In order to
calculate the probability for continuous
variables, these values are required. The
effectiveness of training huge datasets is
hampered as a result of this.

A large number of datasets of varied sizes
have been constructed for the purpose of
this experiment. These datasets include 104,
105, 106, 107, 2 x 107, 22 x 107, 23 x 107,
and 108 occurrences. There are two
continuous predictor variables and one
response variable included in each dataset
to be considered. Both the predictor
variables and the response variable have a
normal distribution, with the response
variable having two class labels: 0 and 1. A
training set consisting of eighty percent and
a testing set consisting of twenty percent
have been randomly separated from the
datasets. Using the parameter values h = 4
and W = {0.1, 0.2, 0.4, 0.8}, the training
set is used in order to generate the multiple
resolution tree structure.

In the beginning, we make use of the Naive
Bayes classifier, which takes the multi-
resolution tree that was provided as input
in order to compute the

TABLE III: Time in Seconds for

MRNB and NB

Conclusions and Future Works
We have developed a universal multi-
resolution indexing tree structure that
guarantees the scalability and reliability of
summarizing both real-time and historical
huge datasets. This structure was built
thanks to our efforts. The construction of
this structure is done just once, and then it
is progressively updated. Its purpose is to
reduce the amount of computational time
and memory that mining and learning
algorithms need. When it comes to creating,
organizing, retrieving, and conserving a
progressive update of the tree levels and
contents, we have developed approaches
that are both efficient and effective. A
number of data mining and learning
approaches would not be possible without
the information that is provided by the
properties of structural summarization.
After using the Naive Bayes classifier to
utilize the tree structure as input, we
examined its performance on a variety of
datasets to see how well it performed it.
According to the results, the algorithm
demonstrates a reduction in the amount of
time and memory that it consumes while it
is operating on the multi-resolution tree
that was recommended, as compared to
when it is working on the data that has not
been processed.

ISSN: 2366-1313

Volume VII Issue I June 2022 www.zkginternational.com 821

The use of this framework for
summarization, which makes use of data
mining methods, is more efficient than
directly retrieving material that has not
been processed. A two-dimensional dataset,
in which the data is organized in a matrix
or CSV file format, is the only dataset that
can be mined using traditional mining
methods. Following the transformation of
raw data into a tree structure with many
resolutions, the data is no longer
appropriate for use with traditional mining
techniques. The implementation of further
data mining algorithms that are capable of
receiving a multi-resolution summarized
tree structure as input will be the primary
focus of our future work to be done. Once
we have gathered the data of the tree
structure, we will proceed to estimate the
parameters of their models using those
observations. Approximation similarity-
based classifiers, Bayesian belief networks,
classic tree classification, and online
estimated Support Vector Machines (SVM)
are some of the many ways that may be
used.

References
1) Bifet, “Mining Big Data in Real

Time,” Informatica 37, pp. 15–20,

2013.

2) C.-W. Tsai, C.-F. Lai, H.-C. Chao,

and A. V. Vasilakos, “Big data

analytics: a survey,” Journal of

Big Data, vol. 2, no. 1, Dec. 2015.

3) W. J. Frawley, “Knowledge

Discovery in Databases: An

Overview,” Knowledge Discovery

in Databases, 1991.

4) M. H. ur Rehman, C. S. Liew, A.

Abbas, P. P. Jayaraman, T. Y.

Wah, and

5) S. U. Khan, “Big Data Reduction

Methods: A Survey,” Data Science

and Engineering, vol. 1, no. 4, pp.

265–284, Dec. 2016.

6) Feng Cai and V. Cherkassky,

“Generalized SMO Algorithm for

SVMBased Multitask Learning,”

IEEE Transactions on Neural

Networks and Learning Systems,

vol. 23, no. 6, pp. 997–1003, Jun.

2012.

7) J. A. R. Rojas, M. Beth Kery, S.

Rosenthal, and A. Dey, “Sampling

techniques to improve big data

exploration,” in 2017 IEEE 7th

Symposium on Large Data

Analysis and Visualization

(LDAV). Phoenix, AZ: IEEE, Oct.

2017, pp. 26–35.

8) S. Garca, S. Ramrez-Gallego, J.

Luengo, J. M. Bentez, and F.

Herrera, “Big data preprocessing:

methods and prospects,” Big Data

Analytics, vol. 1, no. 1, Dec. 2016.

9) S. Garca, J. Luengo, and F.

Herrera, “Instance Selection,” in

ISSN: 2366-1313

Volume VII Issue I June 2022 www.zkginternational.com 822

Data Preprocessing in Data

Mining. Cham: Springer

International Publishing, 2015, vol.

72, pp. 195–243.

10)Y. Fu, X. Zhu, and B. Li, “A

survey on instance selection for

active learning,” Knowledge and

Information Systems, vol. 35, no.

2, pp. 249– 283, May 2013.

A. Cuzzocrea, “OLAP Data

Cube Compression

Techniques: A Ten-Year-

Long History,” in Future

Generation Information

Technology, ser. Lecture

Notes in Computer Science.

Springer, Berlin,

Heidelberg, Dec. 2010, pp.

751–754.

11) J. Han, “Towards on-line

analytical mining in large

databases,” ACM Sigmod Record,

vol. 27, no. 1, pp. 97–107, 1998.

12) S. Alwajidi and L. Yang, “3d

Parallel Coordinates for

Multidimensional Data Cube

Exploration,” in Proceedings of

the 2018 International Conference

on Computing and Big Data -

ICCBD ’18. Charleston, SC, USA:

ACM Press, 2018, pp. 23–27.

13) F. Heine and M. Rohde, “PopUp-

Cubing: An Algorithm to

Efficiently Use Iceberg Cubes in

Data Streams,” in Proceedings of

the Fourth

