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ABSTRACT

The process of a reinforcement learning agent acquiring new abilities involves the agent

seeing and reacting to its environment. There has been a limited amount of implementation

of reinforcement learning in real applications because of the problem of sample efficiency.

In addition to accelerating the learning process as a whole, the objective of developing

interactive reinforcement learning was to make it simpler for normal people to instruct and

assess bots. There is the potential for a broad range of hardware-delivered, naturally

occurring interactions (such as facial expressions, speech, or gestures) to serve as input for

agent learning, taking inspiration from actual biological learning circumstances that occur

in the real world. In addition to this, the agent is able to acquire knowledge from both

multimodal and unimodal sensory input. The purpose of this study is to examine various

approaches for delivering feedback and methods for learning from human social

interaction. These techniques are used to interactive reinforcement learning robots. Last

but not least, we discuss a few issues that have not been addressed and possible directions

for additional research.

Keywords--Human agent/robot interaction, interactive reinforcement learning, interactive
shaping,social interaction.

I INTRODUCTION

Many real-world issues have been solved

with surprising success using

reinforcement learning (RL) [1, 2]. A

growing number of researchers are

turning to RL—now known as deep

RL—as a solution to end-to-end learning

in sequential choice problems, thanks to

developments in deep learning [3]. The

issue of sample efficiency, however, has
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severely restricted the practical use of RL

and deep RL. To acquire an effective

strategy for playing a video game, for

instance, an RL agent may need millions

of training samples [3]. Most real-world

applications of RL and deep RL will

include agents or robots that interact with

humans in their homes. The importance

of, and need for, contact between agent

and human will only grow. Thereby, the

agent's learning might be guided by the

vast amounts of user-generated

information.

Human trainers may guide agents'

learning in several methods, including by

demonstrating concepts, giving

instructions and guidance, and offering

evaluation feedback [4]-[12]. A human

user may demonstrate something to an

agent either physically or via remote

control [10], [13]. Inverse reinforcement

learning [14] is one method of learning

from demonstrations; it allows agents to

maximize policies by learning a reward

function from given demonstrations. The

majority of demos involve solving RL

tasks using one-time interactions utilizing

inverse RL or initializing the agent's

policy. Nevertheless, it may be very

challenging for human trainers without

expertise to provide top-notch

demonstrations in sectors involving

complicated tasks.

Using natural language is another method

that human trainers guide agents to learn

[15]. Improving reinforcement agent

learning often requires encoding the

advice into a computer language or

mapping it from a formal language to

natural language [16], [17]. By

associating intermediate shaping

incentives with free-form natural

language instructions, the agent may also

learn from instruction.

One may pick up a reward function from

them and use it to learn how to obey

linguistic instructions [18, 19]. Optimum

action advice, optimum gain-risk advice,

and other forms of guidance are studied

for their impact on the agent's learning

performance [20]. The human user may

also teach the bots by providing

evaluation comments. The phrase

"human-centered reinforcement learning"

is an approach to agent learning that

relies on human evaluates for feedback

[21]. Algorithms for learning may vary

depending on how evaluative feedback—

whether it's numerical reward, discrete

categorization, or policy—is understood.

Buttons and mouse clicks provide the

majority of human input in these

experiments. They may educate the agent
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more organically by delivering feedback

via emotions, gestures, or even natural

languages, drawing inspiration from real-

life biological learning settings. Both of

these forms of social feedback—

demonstration, guidance, and

instruction—and the agent's own internal

evaluations may help it grow.

The purpose of this paper is to review

the current literature on training agents to

solve reinforcement learning tasks using

various forms of human social feedback,

such as evaluation feedback and

advice/instruction, since there are already

some survey papers on learning from

demonstration and observation [10], [22].

Both model-based and model-free

approaches, as in conventional RL, are

viable options for learning from human

input. Humans may utilize either a

unimodal or multimodal approach to

provide feedback. Furthermore, the agent

has the option to learn from a variety of

human social input sources, or from both

environmental incentives and human

feedback. In several difficult

reinforcement learning tasks, including

RL benchmarking domains [23], [24],

Atari games [25], simulation robotic

control [8], [26], and actual robot

navigation [27], these evaluated

techniques have shown encouraging

outcomes.

II BACKGROUND

All of the algorithms presented in this

work are based on reinforcement learning,

which is initially described in this section.

The next step is to provide interactive

reinforcement learning, in which agents

get input from human trainers and use it

to improve their performance.

A. REINFORCEMENT LEARNING

Agents may learn to tackle sequential

decision-making issues using the

Reinforcement Learning framework [2].

The tuple , where S is a collection of

states and A is an action set, may be used

to express a sequential decision problem

as an MDP. The likelihood of a transition

is denoted by T. The TV show! In the

interval [0, 1], the reward function R is

defined as R V S AS!. <. The discount

factor, which controls the present value

of future benefits, is 2 [0, 1]. A policy,

denoted as V S A, represents the learnt

behaviour of the agent. In this policy, the

probability of choosing an action,

denoted as ~(s; a) D Pr(at D ajst D s), is

defined for each state s. The agent's goal

is to maximize the predicted cumulative
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reward in order to learn the best policy.

There are three common ways to classify

RL algorithms: policy search, value

function, and actor-critic. Policy search

algorithms absorb policies at their own

pace. In order to generate the policy,

value function techniques estimate the

state value function V~ (s) and the action

value function Q~ (s; a). Both the policy

and value functions are simultaneously

learned via actor-critical approaches.

There is room for optimization and

approximation in the policy and value

functions. Function approximation is a

common use case for deep neural

networks in deep RL. Figure 1 displays

the conventional RL framework.

Fig 1:Illustration of an agent learning with standard
reinforcement learning (adapted from [2]).

B. INTERACTIVE REINFORCEMENT
LEARNING

Figure 2 shows that one possible solution

to the sample efficiency issue in RL and

deep RL is interactive reinforcement

learning, which is inspired by potential-

based reward shaping [28]. At the same

time, even people who aren't

professionals in agent programming or

design may teach an interactive RL agent

new things. A user's or instructor's

assessment of the agent's performance,

or evaluative feedback, is the source of

knowledge for an agent in interactive

reinforcement learning. Many interactive

RL algorithms are the product of various

interpretations of evaluative feedback,

such as a comment on the agent's

behaviour based on the expected agent

policy in the human trainer's mind or the

agent's own policy, a discrete categorical

feedback strategy, a numerical reward,

etc. Standard RL agent learners may also

benefit from human counsel and

teaching, and agents can learn to obey

instructions by acquiring a reward

function directly from humans. from [16]
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to [19].

Fig2: Interactive reinforcement learning framework.

III INTERACTIVE

REINFORCEMENT LEARNING

FROMHUMAN FEEDBACK

Similar to traditional RL, there are two

primary types of interactive RL

algorithms found in the literature: those

that rely on models and those that do not.

As with traditional RL, all existing

model-based approaches to interactive

RL based on human input are reward-

based, meaning they treat human

feedback numerically. While approaches

that do not rely on models might be either

policy- or reward-based. Human input is

evaluated in terms of the agent's policy

via policy feedback in policy-based

approaches. Within each category, we

can further classify agents as either

learning a value function alone or

learning both the value function and

policy simultaneously. Here we'll go over

the characteristics of algorithms in both

categories and provide some examples of

algorithms that are applicable from the

literature. In this little supplement, we'll

talk about and go into more detail on how

you learn from both people and the

environment.

Fig 3: A diagrammatic representation of classification

of learningmethods from human feedback.

A. MODEL-BASED METHOD

Since model-based approaches may

enhance learning speed and lower the

quantity of interactions required for

learning once the environment model is

generated, they are typically regarded to

be sample efficient. The TAMER

framework, first developed by Knox and

Stone [9], uses an estimated reward

function to learn and choose behaviours.

The human instructor in TAMER keeps

an eye on the agent's actions and may

provide feedback based on how well it

does. The TAMER agent learning
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framework consists of three main

modules:

1) a model that predicts human reward

based on the agent's past state-action

pairs and the reward instances given by

the trainer; 2) a mechanism to handle the

time lag between evaluating the agent's

behaviour and actually giving the reward;

3) a mechanism to choose actions that are

associated with the predictive reward

function. Because the human trainer

considers the agent's actions in the

context of their long-term consequences,

TAMER agents are able to learn from

short-sighted human rewards [9]. A

TAMER agent might learn non-

myopically from human reward with the

help of VI-TAMER, according to another

proposal [29]. A VI-TAMER agent

models human incentives and learns from

discounted versions of those benefits. A

value function is learnt from the learned

human reward function using value

iteration. Then, actions are selected using

the value function in order to maximize

the cumulative discounted human reward.

Even with dynamic programming and

Monte Carlo tree search strategies for

planning, the VI-TAMER agent may

update the value function. By suggesting

actor-critic TAMER, Vien and Ertel

expanded the TAMER framework to

educate agents in continuous state and

action domains [30]. The agent masters

both the critic's human reward function

and the actor's parametrized policy for

action selection in actor-critic TAMER.

By approximating the reward function

with a deep neural network, deep

TAMER was introduced by [25] to tackle

complicated issues in high-dimensional

state space. In [19], an adversarial

learning technique teaches an agent to

obey language-based instructions by

creating a reward function based on the

difference between a predetermined set of

instruction pairs and the ones created by

the current policy.

The aforementioned approaches are all

reward-based, meaning they use human

input as a numerical reward, and they all

look at using that feedback to represent

the human reward function. When

humans in the training role become weary

of giving feedback, this comes in handy.

Here, we may learn using the reward

function that has already been taught. By

including both the learned reward

function and the known transition

function into its planning, VI-TAMER is

able to enhance its learning capabilities

beyond only modeling the reward

function. Even in the absence of a

transition function, the agent may

nevertheless learn the concept of
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transition via its interactions with the

environment and a human trainer.

Furthermore, the majority of the

aforementioned approaches are limited in

their applicability since they can only

learn in tasks with discrete action spaces,

with the exception of actor-critic

TAMER. It would be very helpful to

apply these ideas to projects with

continuous actions because the action

space for many real-world activities is

continuous. Also, actor-critic TAMER

may be trained independently to learn the

state representation using deep learning

in a high dimensional state space.

B. MODEL-FREE METHOD

Even when it's challenging to model the

environment's and the trainer's reward

function and transition, the agent may

nevertheless learn model-free by

analyzing human-provided feedback. The

vast majority of RL interactive

approaches that rely on human

evaluations actually do not use models.

They may be classified into two groups:

policy-based approaches and reward-

based methods, according on how human

input is understood.

1. REWARD-BASED METHODS

As with traditional RL, human input is

treated numerically in reward-based

interactive RL approaches. An agent may

also learn from seeing human reward,

without the need to simulate the reward

function. The first notion to teach an

agent using just positive rewards was, as

far as we are aware, Clicker training [31].

Cobot, the first software agent, applies

reinforcement learning in a text-based

virtual environment where humans

interact, learning from both rewards and

punishments [4]. Through repeated

invocations of "reward and punish" text-

verbs, the agent learns to initiate

conversational activities (such as

suggesting a subject) via voice. Similar to

how environmental incentives are used in

classical reinforcement learning [33],

[34], human rewards may also be used to

train a Q-value function [32].

Alternatively, the agent may optimize the

policy using a function approximator,

allowing it to learn the policy directly. In

order to train a virtual upper-arm robotic

prosthesis to respond optimally to reward

signals given by humans, Pilarski et al. [8]

developed a continuous action actor-critic

reinforcement learning system [35].

2. POLICY-BASED METHODS
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An agent may gain knowledge from

human input in two ways: first, by seeing

it as a numerical reward, and second, by

viewing it as policy feedback. Under

these circumstances, the human input is

interpreted as an assessment of the

agent's performance. Reference [12]

substitutes the agent's present policy with

human feedback, seeing it as policy-

dependent. The reference function

explains the relative merits of different

action selections in comparison to the

anticipated behaviour. An impartial

approximation of the benefit function is

the Temporal Difference (TD) in

conventional reinforcement learning. The

advantage function is a better fit for a

declining returns strategy; that is, given a

positive chance of choosing action an in

state s, the initial human feedback for

taking action an in state s will be positive,

but it will soon be zero. By integrating

human feedback into an actor-critic

algorithm to determine the policy

gradient, they came up with the COACH

algorithm. In order to make COACH

even more advanced, Arumugam et al.

[36] used a deep neural network to

approximate policy functions. This

allowed them to create deep COACH.

Instead of translating feedback signals

into monetary incentives, the authors of

reference [37] suggest "policy shaping"

via formalizing human feedback as a

label on the optimality of acts and using

it as policy guidance.

Also, trainer-targeted behaviour and

trainer-specific instructional approach are

two factors that influence the meaning of

human feedback, according to [11].

When given no explicit instructions, they

deduced the required action. Loftin et

al.'s algorithms were able to learn more

quickly than algorithms that see feedback

as a numerical reward, according to their

experimental findings. Human input

interpretation is still up for discussion.

Indeed, several trainers may assign

diverse meanings to the same human

feedback, particularly if they use distinct

task-specific interpretations of the

instructions [38]. They may even decide

to switch up the training approach as time

goes on.

IV FEEDBACK SOURCE

Recent efforts in the field of Human

Robot Interaction (HRI) have centered on

creating robots with the ability to

recognize typical human communication

signals in order to facilitate more organic

interactions. One branch of human-robot

interaction (HRI) known as "social HRI"

involves robots that mimic human speech,

facial emotions, and body language in



ISSN: 2366-1313

Volume VII Issue I June 2022 www.zkginternational.com 880

their interactions with one another. This

paves the way for people to engage with

robots in a way that doesn't need a ton of

training, which in turn speeds up the

completion of desired activities while

reducing the amount of effort required

from the human user [42]. Based on the

previous discussion, we will primarily

examine the feedback sources' viewpoint

on robot-human interaction (Figure 4).

A. UNIMODAL SENSORY FEEDBACK

According to this research, there is only

one way in which human trainers may

impart knowledge to their interactive

RL agents. Under these conditions,

human input may be sent by physical

means like keyboard presses, mouse

clicks, etc., or through more intangible

means like gestures, facial expressions,

and natural languages.

As part of interactive RL, human

trainers can mentally construct feedback

and consciously communicate it to

agents using hardware facilities, such as

keyboard keys, mouse clicks (slider or

bar), or other sensors [9, 11–45]. While

this kind of detailed feedback is great

for teaching agents good policies, it

may be delayed due to human trainers'

response times, leaving agents

particularly those with a lot of actions in

the dark as to which acts the trainer is

referring to. To address this issue, Knox

and Stone suggested a credit assign

method that uses a probability density

function to predict the likelihood of a

delay in the teacher's response [23]. On

the other hand, certain trainers may

have vastly varied delays. Also, before

teaching the robots, the trainers need to

have a feel for the hardware, and most

studies include a practice session so that

trainers may practice providing

feedback. Additionally, in a home-like

setting, these interfaces are very

cumbersome and unpractical for trainers

who are not experts. Consequently, it

would be great if robots and trainers

could create more natural

communication interfaces, similar to

how a caretaker teaches a newborn,

utilizing things like voice, emotions,

and gestures.

Interactions that occur in nature

A natural encounter may offer implicit

feedback that an interactive RL agent

can use to learn, rather than the

purposeful explicit input given by

human trainers. Training agents using



ISSN: 2366-1313

Volume VII Issue I June 2022 www.zkginternational.com 881

natural feedback will be very beneficial

and significant, particularly for long-

term behavior learning with interactive

RL, as it will help to prevent cognitive

fatigue induced by delivering explicit

feedback. In order to tailor the

interaction experience for users with

varying skills, it is possible, for instance,

to extract facial expressions as

evaluation input. Undirected human

criticism that does not seek to instruct

or influence behavior—perhaps comes

from more social indicators, including

as smiles, attentiveness, and tone of

voice, are transmitted and may be

viewed without imposing any cognitive

burden on the person [23]. In an ideal

world, human trainers would be able to

provide feedback in a way that is as

natural as real-life human-to-human

communication, including via emotions,

natural languages, gestures, etc.

a: The Face's Reactions

By integrating an emotion system

with conventional reinforcement

learning, Gadanho put out the idea

of an emotion-based architecture, or

EB architecture. As a kind of social

reinforcement, the emotion system

determines a value for well-being.

Using Q-learning, the EB design

can figure out when to swap gears

and reward good behavior [46]. By

presenting the EARL framework,

Broekens investigated the interplay

of Emotion, Adaptation, and

Reinforcement Learning [47]. In

EARL, a "social robot" was trained

using real-time analysis of human

emotional expressions as extra

social reinforcement signals. A

robot taught without social

reinforcement learns far more

slowly than one trained with

emotive facial expressions,

according to their findings. To

enable agents to learn a value

function that correlates camera-

extracted face traits with anticipated

future reward, Veeriah et al.

suggested [48]. Based on their first

findings, it seems that agents may

learn user preferences and provide

less explicit feedback when

choosing a grip. As a reward signal

for the robot's emotional

reinforcement learning, Gordon et al.

used a completely autonomous

social robotic learning companion

for affective child-robot tutoring.

The robot was trained by measuring

the children's valence and

participation using an automated

facial expression analysis system
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[49]. They test their method for two

months with a group of thirty-four

preschoolers. Based on their

findings, it seems that the robot may

adapt its motivating tactics to suit

the needs of individual students by

using both verbal and non-verbal

cues. As an additional kind of

implicit human reward, Arakawa et

al. [41] trained a DQN-TAMER bot

using camera-captured face

expressions.

For example, "happy" would be

considered positive feedback (1) and

"angry" would be considered negative

feedback (1) in the aforementioned study,

which used facial expressions to teach the

agent. On the other hand, throughout

training, the relative importance of good

and negative emotions might change.

Utilizing the acquired data, Li et al.

constructed a prediction model that

mapped the facial feedback to explicit

keypress feedback. When it comes to

recognition accuracy, their simulation

experiment shown that agents can learn

just as well from face input as they would

from explicit keypress feedback [50].

b: LINGUAGE-FRAMEWORK

INFORMATIVE

Natural language education and advise is

an intuitive and promising method for

training agents to complete a job,

particularly for non-technical users, when

autonomous agents learn from human

users. A Q value function that

incorporates programming language-

based advise delivered by an external

observer was first presented in Reference

[16] as the RATLE (Reinforcement and

advise-Taking Learning Environment)

system. In order to impact the agent's

learning policy, the guidance in reference

[17] was formalized from English-based

natural language. The LEARN

(languageE-Action Reward Network)

architecture, suggested in reference [18],

converts unstructured instructions given

in plain language into intermediate-

shaped rewards depending on the agent's

actions. And to teach a genuine

autonomous mobile robot to navigate in a

simulated environment, Tenorio et al. [26]

employed vocal instructions based on

preset natural languages to provide

human evaluative feedback. Their

experimental findings demonstrate that,

in contrast to conventional reinforcement

learning based only on environmental

rewards, quicker convergence was

attained when human incentives supplied

verbally are considered to be loud.
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As an alternative to relying on natural

language feedback to assist RL agents in

learning from environmental rewards,

agents may learn policies directly from

instructions based on natural language. In

an object-oriented MDP framework,

language was mapped to a reward

function in reference [51]. One study that

learned a strategy for instruction

execution in a contextual bandit scenario

employed raw visual observations and

text input based on natural language [52].

A reward function is constructed by

distinguishing a predefined set of

instruction pairs from the instruction

pairs generated by the present policy.

This framework is suggested in [19] as an

adversarial learning approach to enhance

policy learning.

i: Gestural Input

Hand and body movements are common

forms of nonverbal communication

between humans, particularly in

situations when spoken language is either

not permitted or is not understood.

Consequently, it is possible to train

agents using human gestures as input. In

their study, Kuno et al. demonstrated how

an intelligent wheelchair could be

controlled using hand gestures. They also

suggested a way to identify unfamiliar

hand motions via user interaction [53].

With the goal of teaching a robot.

developers, Voyles and Khosla advocated

for the use of gesture-based programming

techniques to teach robots, bypassing the

need for programmers altogether [54].

Another way that gestures might help RL

agents learn is by giving them feedback

in the form of advise or commands [55],

[56].

B. Input from Multiple Sensors

All of the aforementioned methods and

systems for detecting human emotion rely

on identifying a particular input modality.

There are two primary benefits to using

multimodal inputs instead of a single

input: first, a multimodal recognition

system can estimate using the remaining

modalities in the event that one modality

is unavailable owing to noise or

occlusion; and second, feedback with

improved robustness and performance

can be provided by the complementary

and diverse information provided by

multiple modalities.

A multimodal interaction paradigm for

discourse segmentation in free-form

gesticulation accompa-nying speech in

natural conversation was presented by

Quek et al. [57] to get an understanding

of the interaction between speech and
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gesture and how they facilitate

communication. Cruz et al. combine

interactive reinforcement learning with

dynamic multimodal audiovisual

interaction [56]. Agents may be

instructed by human trainers using voice,

gestures, or a mix of the two, according

to specified guidelines. As opposed to

unimodal situations, their findings

demonstrate that multimodal integration

allows the robot to achieve greater

performance with a less number of

training episodes via interactive

reinforcement learning. As an example of

implicit social evaluative feedback,

references [58], [59] used the audience's

verbal and visual grins to determine the

reward and influence the robot's comedic

performance. Leite et al. [60] adopt a

multimodal framework to characterize the

user's emotional states and enable the

robot to modify its empathic reactions to

the individual preferences of the kid

engaging with it, endowing a chess

companion robot for children with

empathy skills. They assess the user's

emotional state by integrating visual and

task-related characteristics. An method

for reinforcement learning with many

arms uses the difference in valence before

and after the robot adopts an empathetic

stance to determine its rewards. Results

from their pilot research with 40 kids

demonstrate that people are positively

affected by robots that exhibit empathetic

behaviour.

The majority of the aforementioned

approaches to agent training rely on a

combination of only two modal inputs,

and even then, those inputs are severely

confined to visual emotions and task-

related aspects, vocal laughter, and

gestures. Attention, voice prosody, gaze

direction, and other social signals from

the human trainer may also be used as

feedback. Plus, the trainer may provide

feedback via more than two modalities.

Furthermore, agents may be trained using

a combination of hardware-delivered

feedback and this natural interactive

feedback. As an example, Li et al. [50]

suggested that an agent may learn from

both the anticipated facial feedback and

the explicit keystroke feedback by

mapping the expressions to the keys.

V CONCLUSIONAND FUTURE

DIRECTIONS

In this article, we will take a look back at

how far we've come in using various

forms of human social input to solve RL

problems. Several interesting avenues for

further study are briefly covered in this

section.
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A. GAINING INFORMATION FROM

IMPLICIT NATURE

A common issue with interactive RL is

the lack of a naturally occurring interface

for trainer-robot feedback in household

scenarios. Most of them relied on

clicking buttons or using the mouse to

provide feedback, which is very laborious

and unpractical for trainers who aren't

experts in home-like settings. Although

there have been studies looking at the use

of nonverbal cues like facial expressions,

voice, and gestures to provide agents

feedback and guidance during training,

most of the time trainers deliver this

feedback with a specific goal in mind.

Implicit feedback for agent learning may

be acquired from human social cues such

as smiles, speech, attentiveness, prosody,

and other more widely broadcast signals,

which do not impose any cognitive

burden to the human [23]. Finding

strategies to let robots learn from these

unstructured, conveyed implicit

feedbacks is an open topic. One example

is the detection of affect and emotion in

conversational prosody [62], [63] and

speech itself [61].

B. The Design of Interactions

Looking at it from a robotics standpoint,

knowing how to program the trainer-

robot relationship is key to developing

algorithms that let humans teach well

while being fully present during training.

Customizing interactions with socially

supportive robots may benefit from this.

As part of the transparent learning

process [64]-[66], the robot

communicates its learning status and

requests feedback from the human

instructor using body language and facial

expressions. A issue that has to be

researched further is what the robot

should say or do in order to get training

that lasts longer or is of better quality.

Chapter 5: Using Various Methods of

Instruction Evaluative feedback and

advice/instruction learning are the

primary foci of the literatures surveyed in

this article. Even with conventional RL

learning paradigms, a completely

autonomous interactive RL agent requires

algorithms that can learn from human

demonstrations, evaluations, and

advice/instruction. There has been a lot of

effort to integrate normal RL with

learning via demonstration[67],

evaluative feedback[37], and advise [18].

The same instructional modalities that

human instructors depend on—

demonstration, verbal advice/instruction,
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evaluative feedback, attentional signals,

and gestures—are essential for agents to

learn as well. There is some prior work

that enables a robot to learn from

examples and the instructor's natural

feedback signals given verbally [69], but

there is still a lot of room for

improvement in this area,

notwithstanding the lessons learned via

human demonstration and evaluation

feedback [70].
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